Cumulus Documentation

Bo Li, Joshua Gould, and et al.

Dec 21, 2019

Contents

1	Version 0.12.0 December 14, 2019	3
2	Version 0.11.0 December 4, 2019	5
3	Version 0.10.0 October 2, 2019	7
4	Version 0.7.0 Feburary 14, 2019	9
5	Version 0.6.0 January 31, 2019	11
6	Version 0.5.0 November 18, 2018	13
7	Version 0.4.0 October 26, 2018	15
8	Version 0.3.0 October 24, 2018	17
9	Version 0.2.0 October 19, 2018	19
10	Version 0.1.0 July 27, 2018	21

All of our docker images are publicly available on Docker Hub and Quay. Our workflows use Docker Hub as the default Docker registry. Users can use Quay as the Docker registry by entering quay.io/cumulus/ for the workflow input docker_registry, or can enter a custom registry URL of their choice.

Version 0.12.0 December 14, 2019

Added support for building references for sc/snRNA-seq, scATAC-seq, single-cell immune profiling, and SMART-Seq2 data.

Version 0.11.0 December 4, 2019

Reorganized Cumulus documentation.

CHAPTER $\mathbf{3}$

Version 0.10.0 October 2, 2019

scCloud renamed to cumulus.

cumulus can accept either a sample sheet or a single file.

Version 0.7.0 Feburary 14, 2019

Added support for 10x genomics scATAC assays. scCloud runs FIt-SNE as default.

Version 0.6.0 January 31, 2019

Added support for 10x genomics V3 chemistry.

Added support for extracting feature matrix for Perturb-Seq data.

Added R script to convert output_name.seurat.h5ad to Seurat object. Now the raw.data slot stores filtered raw counts.

Added min_umis and max_umis to filter cells based on UMI counts.

Added QC plots and improved filtration spreadsheet.

Added support for plotting UMAP and FLE.

Now users can upload their JSON file to annotate cell types.

Improved documentation.

Added lightGBM based marker detection.

Version 0.5.0 November 18, 2018

Added support for plated-based SMART-Seq2 scRNA-Seq data.

Version 0.4.0 October 26, 2018

Added CITE-Seq module for analyzing CITE-Seq data.

CHAPTER $\mathbf{8}$

Version 0.3.0 October 24, 2018

Added the demuxEM module for demultiplexing cell-hashing/nuclei-hashing data.

Version 0.2.0 October 19, 2018

Added support for V(D)J and CITE-Seq/cell-hashing/nuclei-hashing.

Version 0.1.0 July 27, 2018

KCO tools released!

10.1 First Time Running

10.1.1 Authenticate with Google

If you've done this before you can skip this step - you only need to do this once.

1. Ensure the Google Cloud SDK is installed on your computer.

Note: Broad users do not have to install this-they can type:

reuse Google-Cloud-SDK

to make the Google Cloud tools available.

2. Execute the following command to login to Google Cloud.:

gcloud auth login

- 3. Copy and paste the link in your unix terminal into your web browser.
- 4. Enter authorization code in unix terminal.

10.1.2 Create a Terra workspace

1. Create a new Terra workspace by clicking Create New Workspace in Terra

For more detailed instructions please see this document.

10.2 Latest and stable versions on Terra

Cumulus is a fast growing project. As a result, we frequently update WDL snapshot versions on Terra. See below for latest and stable WDL versions you can use.

10.2.1 Latest version

WDL	Snapshot	: Function	
cumulus/cellranger_workflow 6		Run Cell Ranger tools, which include extracting sequence reads us-	
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count	
		matrix using cellranger count or cellranger-atac count, run cell-	
		ranger vdj or feature-barcode extraction	
cumulus/cellranger_create_refere	ncle	Run Cell Ranger tools to build sc/snRNA-seq references.	
cumulus/cellranger_atac_create_1	eference	Run Cell Ranger tools to build scATAC-seq references.	
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-	
		ences.	
cumulus/smartseq2	5	Run Bowtie2 and RSEM to generate gene-count matrices for	
		SMART-Seq2 data from FASTQ files	
cumulus/smartseq2_create_refere	n¢le	Generate user-customized genome references for SMART-Seq2	
		data.	
cumulus/cumulus	11	Run cumulus analysis module for variable gene selection, batch cor-	
		rection, PCA, diffusion map, clustering, visualization, differential	
		expression analysis, cell type annotation, etc.	
cumulus/cumulus_subcluster	8	Run subcluster analysis using cumulus	
cumulus/cumulus_hashing_cite_seq		Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis	

10.2.2 Stable version - v0.12.0

WDL	Snapshot	Function	
cumulus/cellranger_workflow 6		Run Cell Ranger tools, which include extracting sequence reads us-	
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count	
		matrix using cellranger count or cellranger-atac count, run cell-	
		ranger vdj or feature-barcode extraction	
cumulus/cellranger_create_refere	nde	Run Cell Ranger tools to build sc/snRNA-seq references.	
cumulus/cellranger_atac_create_r	eference	Run Cell Ranger tools to build scATAC-seq references.	
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-	
		ences.	
cumulus/smartseq2	5	Run Bowtie2 and RSEM to generate gene-count matrices for	
		SMART-Seq2 data from FASTQ files	
cumulus/smartseq2_create_refere	nele	Generate user-customized genome references for SMART-Seq2	
		workflow.	
cumulus/cumulus	11	Run cumulus analysis module for variable gene selection, batch cor-	
		rection, PCA, diffusion map, clustering, visualization, differential	
		expression analysis, cell type annotation, etc.	
cumulus/cumulus_subcluster	8	Run subcluster analysis using cumulus	
cumulus/cumulus_hashing_cite_sem Run cumulu		Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis	

10.2.3 Stable version - v0.11.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	4	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/smartseq2	3	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/cumulus	8	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	5	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_s	eq	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

10.2.4 Stable version - v0.10.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	3	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/smartseq2	3	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/cumulus	7	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	4	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_s	e¢	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

10.2.5 Stable version - HTAPP v2

WDL	Snapshot	Function
regev/cellranger_mkfastq_count	45	Run Cell Ranger to extract FASTQ files and generate gene-count
		matrices for 10x genomics data
scCloud/smartseq2	5	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
scCloud/scCloud	14	Run scCloud analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering and more
scCloud/scCloud_subcluster	9	Run subcluster analysis using scCloud
scCloud/scCloud_hashing_cite_se	eq9	Run scCloud for cell-hashing/nucleus-hashing/CITE-Seq analysis

10.2.6 Stable version - HTAPP v1

WDL	Snapshot	Function
regev/cellranger_mkfastq_count	39	Run Cell Ranger to extract FASTQ files and generate gene-count
		matrices for 10x genomics data
scCloud/scCloud	3	Run scCloud analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering and more

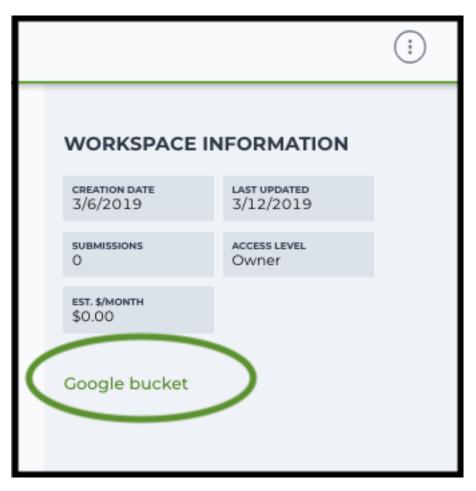
10.3 Run Cell Ranger tools using cellranger_workflow

cellranger_workflow wraps Cell Ranger to process single-cell/nucleus RNA-seq, single-cell ATAC-seq and single-cell immune profiling data, and supports feature barcoding (cell/nucleus hashing, CITE-seq, Perturb-seq). It also provide routines to build cellranger references.

10.3.1 A general step-by-step instruction

1. Import cellranger_workflow

Import *cellranger_workflow* workflow to your workspace.


See the Terra documentation for adding a workflow. The *cellranger_workflow* workflow is under Broad Methods Repository with name "**cumulus/cellranger_workflow**".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_workflow* workflow in the drop-down menu.

2. Upload sequencing data to Google bucket

Copy your sequencing output to your workspace bucket using gsutil (you already have it if you've installed Google cloud SDK) in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

```
gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-0000-

$\circ{0000-0000000000/VK18WBC6Z4}$
```

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

```
reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

reuse Google-Cloud-SDK

3. Prepare a sample sheet

3.1 Sample sheet format:

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to demultiplex flowcells and generate channel-specific count matrices. Note that *Sample, Lane*, and *Index* columns are defined exactly the same as in 10x's simple CSV layout file.

A brief description of the sample sheet format is listed below (required column headers are shown in **bold**).

Column	Description
Sample	Contains sample names. Each 10x channel should have a unique sample name.
Reference	
	Provides the reference genome used by Cell Ranger for each 10x channel.
	The elements in the <i>reference</i> column can be either Google bucket URLs to reference
	tarballs or keywords such as <i>GRCh38_v3.0.0</i> .
	A full list of available keywords is included in each of the following data type sections
	(e.g. sc/snRNA-seq) below.
Flowcell	
	Indicates the Google bucket URLs of uploaded BCL folders.
	If starts with FASTQ files, this should be Google bucekt URLs of uploaded FASTQ folders.
	The FASTQ folders should contain one subfolder for each sample in the flowcell with the sample name as the subfolder name.
	Each subfolder contains FASTQ files for that sample.
Lane	
	Tells which lanes the sample was pooled into.
	Can be either single lane (e.g. 8) or a range (e.g. 7-8) or all (e.g. *).
Index	Sample index (e.g. SI-GA-A12).
Chemistry	Describes the 10x chemistry used for the sample. This column is optional.
DataType	
	Describes the data type of the sample — <i>rna</i> , <i>vdj</i> , <i>adt</i> , or <i>crispr</i> .
	rna refers to gene expression data (<i>cellranger count</i>),
	vdj refers to V(D)J data (<i>cellranger vdj</i>),
	adt refers to antibody tag data, which can be either CITE-Seq, cell-hashing, or nucleus-hashing,
	crispr refers to Perturb-seq guide tag data,
	atac refers to scATAC-Seq data (<i>cellranger-atac count</i>).
	This column is optional and the default data type is <i>rna</i> .
FeatureBarco	deFile
	Google bucket urls pointing to feature barcode files for <i>adt</i> and <i>crispr</i> data.
	Features can be either antibody for CITE-Seq, cell-hashing, nucleus-hashing or gRNA for Perburb-seq.
	This column is optional provided no <i>adt</i> or <i>crispr</i> data are in the sample sheet.

The sample sheet supports sequencing the same 10x channels across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list it in multiple rows, with one flowcell per row. In the following example, we have 4 samples sequenced in two flowcells.

Example:

(continued from previous page)

3.2 Upload your sample sheet to the workspace bucket:

Example:

```
gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-

→0000-0000-0000000000/
```

4. Launch analysis

In your workspace, open cellranger_workflow in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Process single workflow from files as below

Process single workflow from files

Process multiple workflows from: Select data type...

Select Data

and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.

5. Notice: run cellranger mkfastq if you are non Broad Institute users

Non Broad Institute users that wish to run cellranger mkfastq must create a custom docker image that contains bcl2fastq.

See *bcl2fastq* instructions.

6. Do not run cellranger mkfastq

Sometimes, users might want to perform demultiplexing locally and only run the count part on the cloud. This section describes how to only run the count part via cellranger_workflow.

1. Copy your FASTQ files to the workspace using gsutil in your unix terminal.

You should upload folders of FASTQ files. The uploaded folder (for one flowcell) should contain one subfolder for each sample belong to the this flowcell. In addition, the subfolder name should be the sample name. Each subfolder contains FASTQ files for that sample. Example:

```
gsutil -m cp -r /foo/bar/fastq_path/K18WBC6Z4 gs://fc-e0000000-0000-0000-

$\circ$0000-0000000000/K18WBC6Z4_fastq
```

2. Create a sample sheet.

Flowcell column should list Google bucket URLs of the FASTQ folders for flowcells.

Example:

```
Sample, Reference, Flowcell
sample_1, GRCh38_v3.0.0, gs://fc-e0000000-0000-0000-0000-0000000000/
→K18WBC6Z4_fastq
```

3. Set optional input run_mkfastq to false.

10.3.2 Single-cell and single-nucleus RNA-seq

To process sc/snRNA-seq data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scRNA-seq references are summarized below.

Keyword	Description
GRCh38_v3.0.0	Human GRCh38, cellranger reference 3.0.0, Ensembl v93 gene annotation
hg19_v3.0.0	Human hg19, cellranger reference 3.0.0, Ensembl v87 gene annotation
mm10_v3.0.0	Mouse mm10, cellranger reference 3.0.0, Ensembl v93 gene annotation
GRCh38_and_m	mH0urv3al(GRCh38) and mouse (mm10), cellranger references 3.1.0, Ensembl
	v93 gene annotations for both human and mouse
GRCh38_v1.2.0	Human GRCh38, cellranger reference 1.2.0, Ensembl v84 gene annotation
or GRCh38	
hg19_v1.2.0 or	Human hg19, cellranger reference 1.2.0, Ensembl v82 gene annotation
hg19	
mm10_v1.2.0 or	Mouse mm10, cellranger reference 1.2.0, Ensembl v84 gene annotation
mm10	
GRCh38_and_m	mll0nvan2a0d mouse, built from GRCh38 and mm10 cellranger references, En-
or	sembl v84 gene annotations are used
GRCh38_and_m	m10

Pre-built snRNA-seq references are summarized below.

Keyword	Description
GRCh38_premrr	aHah2af), introns included, built from GRCh38 cellranger reference 1.2.0, En-
or	sembl v84 gene annotation, treating annotated transcripts as exons
GRCh38_premrr	a
mm10_premrna_	vM20se, introns included, built from mm10 cellranger reference 1.2.0, En-
or	sembl v84 gene annotation, treating annotated transcripts as exons
mm10_premrna	
GRCh38_premrr	aHandamandOmpresentinar_onls2i.0cluded, built from GRCh38_premrna_v1.2.0
or	and mm10_premrna_v1.2.0
GRCh38_premrr	a_and_mm10_premrna

2. Index column.

Put 10x single cell 3' sample index set names (e.g. SI-GA-A12) here.

3. Chemistry column.

According to cellranger count's documentation, chemistry can be

Chemistry	Explanation
auto	autodetection (default). If the index read has extra bases besides cell barcode
	and UMI, autodetection might fail. In this case, please specify the chemistry
threeprime	Single Cell 3
fiveprime	Single Cell 5
SC3Pv1	Single Cell 3 v1
SC3Pv2	Single Cell 3 v2
SC3Pv3	Single Cell 3 v3. You should set cellranger version input parameter to >=
	3.0.2
SC5P-PE	Single Cell 5 paired-end (both R1 and R2 are used for alignment)
SC5P-R2	Single Cell 5 R2-only (where only R2 is used for alignment)

4. *DataType* column.

This column is optional with a default **rna**. If you want to put a value, put **rna** here.

5. FetureBarcodeFile column.

Leave it blank for scRNA-seq and snRNA-seq.

6. Example:

(continues on next page)

(continued from previous page)

Workflow input

For sc/snRNA-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cellranger count. Revalant workflow inputs are described below, with required inputs high-lighted in bold.

32

NameDescription	Example	Default
nput Scanpfile Sheet (contains Sample, Reference, Flowcell, Lane, In- dex as required and Chemistry, DataType, FeatureBarcodeFile as optional)	"gs://fc-e0000000- 0000-0000-0000- 000000000000	
outpuQulinectory	"gs://fc-e000000- 0000-0000-0000- 000000000000/cellranger_output"	
un_mlffystq want to run cellranger mkfastq	true	true
un_cdfinytou want to run cellranger count	true	true
lelete If net the state of the	false	false
orce_ Fellse pipeline to use this number of cells, bypassing the cell detec- tion algorithm, mutually exclusive with expect_cells	6000	
expectExplasted number of recovered cells. Mutually exclusive with force_cells	3000	
analysis (dimensionality reduc- tion, clustering, etc.)	false	false
ellrangehrangsionersion, could be 3.1.0, 3.0.2, or 2.2.0	"3.1.0"	"3.1.0"
 lockef Dockistryegistry to use for cell-ranger_workflow. Options: "cumulusprod" for Docker Hub images; "quay.io/cumulus" for backup images on Red Hat registry. 		"cumulusprod"
cellranger_kankfastgistrycketoregistry for cellranger mkfastq. De- fault is the registry to which only Broad users have access. See <i>bcl2fastq</i> for making your own registry.		"gcr.io/broad- cumulus"
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a us-central1-b us-central1-c us-central1-f us-east1-f us-east1-c us-west1-a us-west1-a b us-west1-c"
hum_dyumber of cpus to request for one node for cellranger mkfastq and cellranger count		32
nemoMemory size string for cellranger mkfastq and cellranger count		"120G"
nkfast Qptliskalsøisse space in GB for mk- fastq	1500 Chapter 10.	Version 0.1.0 <i>July 27,</i>
count Idisk space in GB needed for cell-	500	500

Workflow output

Name	Туре	Description
output_fastqs_directory	Array[String]	A list of google bucket urls containing FASTQ files, one
		url per flowcell.
output_count_directory	Array[String]	A list of google bucket urls containing count matrices,
		one url per sample.
metrics_summaries	File	A excel spreadsheet containing QCs for each sample.
output_web_summary	Array[File]	A list of htmls visualizing QCs for each sample (cell-
		ranger count output).
count_matrix	String	gs url for a template count_matrix.csv to run Cumulus.

See the table below for important sc/snRNA-seq outputs.

10.3.3 Feature barcoding assays (cell & nucleus hashing, CITE-seq and Perturbseq)

cellranger_workflow can extract feature-barcode count matrices in CSV format for feature barcoding assays such as *cell and nucleus hashing*, *CITE-seq*, and *Perturb-seq*. For cell and nucleus hashing as well as CITE-seq, the feature refers to antibody. For Perturb-seq, the feature refers to guide RNA. Please follow the instructions below to configure cellranger_workflow.

Prepare feature barcode files

Prepare a CSV file with the following format: feature_barcode,feature_name. See below for an example:

```
TTCCTGCCATTACTA, sample_1
CCGTACCTCATTGTT, sample_2
GGTAGATGTCCTCAG, sample_3
TGGTGTCATTCTTGA, sample_4
```

The above file describes a cell hashing application with 4 samples.

Then upload it to your google bucket:

Sample sheet

1. Reference column.

This column is not used for extracting feature-barcode count matrix. To be consistent, please put the reference for the associated scRNA-seq assay here.

2. Index column.

The index can be either Illumina index primer sequence (e.g. ATTACTCG, also known as D701), or 10x single cell 3' sample index set names (e.g. SI-GA-A12).

Note 1: All index sequences (including 10x's) should have the same length (8 bases). If one index sequence is shorter (e.g. ATCACG), pad it with P7 sequence (e.g. ATCACGAT).

Note 2: It is users' responsibility to avoid index collision between 10x genomics' RNA indexes (e.g. SI-GA-A8) and Illumina index sequences for used here (e.g. ATTACTCG).

3. Chemistry column.

The following keywords are accepted for *Chemistry* column:

Chemistry	Explanation
SC3Pv3	Single Cell 3 v3 (default).
SC3Pv2	Single Cell 3 v2
fiveprime	Single Cell 5
SC5P-PE	Single Cell 5 paired-end (both R1 and R2 are used for alignment)
SC5P-R2	Single Cell 5 R2-only (where only R2 is used for alignment)

4. DataType column.

Put adt here if the assay is CITE-seq, cell or nucleus hashing. Put crispr here if Perturb-seq.

5. *FetureBarcodeFile* column.

Put Google Bucket URL of the feature barcode file here.

6. Example:

In the sample sheet above, despite the header row,

- First row describes the normal 3' RNA assay;
- Second row describes its associated antibody tag data, which can from either a CITE-seq, cell hashing, or nucleus hashing experiment.
- Third row describes another tag data, which is in 10x genomics' V3 chemistry. For tag and crispr data, it is important to explicitly state the chemistry (e.g. SC3Pv3).
- Last row describes one gRNA guide data for Perturb-seq (see crispr in DataType field).

Workflow input

For feature barcoding data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cumulus adt. Revalant workflow inputs are described below, with required inputs highlighted in bold.

35

NameDescription	Example	Default
input Scave pfile Sheet (contains Sample,	"gs://fc-e0000000-	
Reference, Flowcell, Lane, In-	0000-0000-0000-	
dex as required and Chemistry,	000000000000/sample_sheet.csv"	
DataType, FeatureBarcodeFile as		
optional)		
outpuQ_utipectory	"gs://fc-e000000-	
	0000-0000-0000-	
	000000000000/cellranger_output"	
run_mltfystop want to run cellranger	true	true
mkfastq		
delete If nteletel Becchortyrectories after de-	false	false
mux. If false, you should delete		
this folder yourself so as to not in-		
cur storage charges		
scaffoßicastfoluenseequence in sgRNA for	"GTTTAAGAGCTAAGCTGGAA"	,
Purturb-seq, only used for crispr		
data type		
max_nMsoxiatalm hamming distance in	3	3
feature barcodes for the adt task		
min_readinimation read count ratio (non-	0.1	0.1
inclusive) to justify a feature		
given a cell barcode and feature		
combination, only used for the adt		
task and crispr data type		
cellrangethrangesionersion, could be 3.1.0,	"3.1.0"	"3.1.0"
3.0.2, 2.2.0		
cumulGsummentsisonversion for extracting	"0.12.0"	"0.12.0"
feature barcode matrix. Versions		
available: 0.12.0, 0.11.0.		
dockenDockistryegistry to use for cell-	"cumulusprod"	"cumulusprod"
ranger_workflow. Options:	1	1
• "cumulusprod" for Docker		
Hub images;		
• "quay.io/cumulus" for		
backup images on Red Hat		
registry.		
cellrangorkenkfasegisdrycketoregisery for	"gcr.io/broad-cumulus"	"gcr.io/broad-
cellranger mkfastq. De-		cumulus"
fault is the registry to which only		
Broad users have access. See		
bcl2fastq for making your own		
registry.	<u> </u>	<u> </u>
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a
		us-central1-b
		us-central1-c us
		central1-f us-east1-
		us-east1-c us-east1-
		us-west1-a us-west1
		b us-west1-c"
num_dyumber of cpus to request for one node for cellranger mkfastq	32	32
memoMemory size string for cellranger	"120G"	"120G"
mkfastq Run Cell Banger tools using Sellran	ge ₅₂ workflow	"32G"
tracting feature count matrix		
	1500	1500
mkfastoptionkalspissespace in GB for mk-	1500	

Parameters used for feature count matrix extraction

If the chemistry is V2, 10x genomics v2 cell barcode white list will be used, a hamming distance of 1 is allowed for matching cell barcodes, and the UMI length is 10. If the chemistry is V3, 10x genomics v3 cell barcode white list will be used, a hamming distance of 0 is allowed for matching cell barcodes, and the UMI length is 12.

For Perturb-seq data, a small number of sgRNA protospace sequences will be sequenced ultra-deeply and we may have PCR chimeric reads. Therefore, we generate filtered feature count matrices as well in a data driven manner:

- 1. First, plot the histogram of UMIs with certain number of read counts. The number of UMIs with x supporting reads decreases when x increases. We start from x = 1, and a valley between two peaks is detected if we find count [x] < count [x + 1] < count [x + 2]. We filter out all UMIs with < x supporting reads since they are likely formed due to chimeric reads.
- 2. In addition, we also filter out barcode-feature-UMI combinations that have their read count ratio, which is defined as total reads supporting barcode-feature-UMI over total reads supporting barcode-UMI, no larger than min_read_ratio parameter set above.

Workflow outputs

See the table below for important outputs.

Name	Туре	Description
output_fastqs_directory	Array[String]	A list of google bucket urls containing FASTQ files, one
		url per flowcell.
output_count_directory	Array[String]	A list of google bucket urls containing feature-barcode
		count matrices, one url per sample.
count_matrix	String	gs url for a template count_matrix.csv to run cumulus.

In addition, For each antibody tag or crispr tag sample, a folder with the sample ID is generated under $output_directory$. In the folder, two files — sample_id.csv and sample_id.stat.csv.gz — are generated.

sample_id.csv is the feature count matrix. It has the following format. The first line describes the column names: Antibody/CRISPR, cell_barcode_1, cell_barcode_2, ..., cell_barcode_n. The following lines describe UMI counts for each feature barcode, with the following format: feature_name, umi_count_1, umi_count_2, ..., umi_count_n.

sample_id.stat.csv.gz stores the gzipped sufficient statistics. It has the following format. The first line describes the column names: Barcode, UMI, Feature, Count. The following lines describe the read counts for every barcode-umi-feature combination.

If data type is crispr, three additional files, sample_id.umi_count.pdf, sample_id.filt.csv and sample_id.filt.stat.csv.gz, are generated.

sample_id.umi_count.pdf plots number of UMIs against UMI with certain number of reads and colors UMIs with high likelihood of being chimeric in blue and other UMIs in red. This plot is generated purely based on number of reads each UMI has.

sample_id.filt.csv is the filtered feature count matrix. It has the same format as sample_id.csv.

sample_id.filt.stat.csv.gz is the filtered sufficient statistics. It has the same format as sample_id. stat.csv.gz.

10.3.4 Single-cell ATAC-seq

To process scATAC-seq data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scATAC-seq references are summarized below.

Keyword	Description
GRCh38_atac_v1	.H0 man GRCh38, cellranger-atac reference 1.1.0
mm10_atac_v1.1.	0 Mouse mm10, cellranger-atac reference 1.1.0
hg19_atac_v1.1.0	Human hg19, cellranger-atac reference 1.1.0
b37_atac_v1.1.0	Human b37 build, cellranger-atac reference 1.1.0
GRCh38_and_m	mH0uratacGRICh98 and mouse mm10, cellranger-atac reference 1.1.0
hg19_and_mm10	Atacnavil Hg09 and mouse mm10, cellranger-atac reference 1.1.0

2. Index column.

Put 10x single cell ATAC sample index set names (e.g. SI-NA-B1) here.

3. Chemistry column.

This column is not used for scATAC-seq data. Put **auto** here as a placeholder if you decide to include the Chemistry column.

4. DataType column.

Set it to atac.

5. FetureBarcodeFile column.

Leave it blank for scATAC-seq.

6. Example:

Workflow input

cellranger_workflow takes Illumina outputs as input and runs cellranger-atac mkfastq and cellranger-atac count. Please see the description of inputs below. Note that required inputs are shown in bold.

	eDescription	Example	Default
input	Sam_fike Sheet (contains Sample, Ref-	"gs://fc-e0000000-0000-0000-0000-	
	erence, Flowcell, Lane, Index as re-	000000000000/sample_sheet.csv"	
	quired and Chemistry, DataType, Fea-		
	tureBarcodeFile as optional)		
outpu	utQdipentonyctory	"gs://fc-e0000000-0000-0000-0000-	
		000000000000/cellranger_output"	
run_n	nltfastq you want to run	true	true
	cellranger-atac mkfastq		
run_c	ollint you want to run	true	true
	cellranger-atac count		
delete	_IndutettineCtbrglirectories after demux.	false	false
	If false, you should delete this folder		
	yourself so as to not incur storage		
	charges		
force	deduce pipeline to use this number of	6000	
	cells, bypassing the cell detection al-		
	gorithm		
cellra	ngehlratagervetsion/ersion, currently only	"1.1.0"	"1.1.0"
	1.1.0		
docke	er Drogkstry registry to use for cell-	"cumulusprod"	"cumulusprod"
	ranger_workflow. Options:	L	
	• "cumulusprod" for Docker Hub		
	images;		
	• "quay.io/cumulus" for backup		
	images on Red Hat registry.		
zones	Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a us-
	C		central1-b us-central1-c
			us-central1-f us-east1-b
			us-east1-c us-east1-c
			us-west1-a us-west1-b
			us-west1-c"
atac	numance of cpus for cellranger-atac	64	64
	count		
atac	more string for cellranger-atac	"57.6G"	"57.6G"
	count		
mkfas	st Optishast padiesk space in GB for	1500	1500
initia	cellranger-atac mkfastq		1000
atac	di B kiskpaspace in GB needed for	500	500
aut_	cellranger-atac count		
nroon	p Nible ber of preemptible tries	2	2
preen		<u> </u>	<u> </u>

Workflow output

See the table below for important scATAC-seq outputs.

Name	Туре	Description	
output_fastqs_directory	Array[String]	A list of google bucket urls containing FASTQ files, one	
		url per flowcell.	
output_count_directory	Array[String]	A list of google bucket urls containing cellranger-atac	
		count outputs, one url per sample.	
metrics_summaries	File	A excel spreadsheet containing QCs for each sample.	
output_web_summary	Array[File]	A list of htmls visualizing QCs for each sample (cell-	
		ranger count output).	
count_matrix	String	gs url for a template count_matrix.csv to run cumulus.	

10.3.5 Single-cell immune profiling

To process single-cell immune profiling (scIR-seq) data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scIR-seq references are summarized below.

Keyword	Description		
GRCh38_vdj_v3	1. Human GRCh38 V(D)J sequences, cellranger reference 3.1.0, annotation		
	built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf		
GRCm38_vdj_v3	1Mo ouse GRCm38 V(D)J sequences, cellranger reference 3.1.0, annotation		
	built from Ensembl Mus_musculus.GRCm38.94.gtf		
GRCh38_vdj_v2	GRCh38_vdj_v2.0.Human GRCh38 V(D)J sequences, cellranger reference 2.0.0, annotation		
or GRCh38_vdj	built from Ensembl <i>Homo_sapiens.GRCh38.87.chr_patch_hapl_scaff.gtf</i> and		
	vdj_GRCh38_alts_ensembl_10x_genes-2.0.0.gtf		
GRCm38_vdj_v2	.230 ouse GRCm38 V(D)J sequences, cellranger reference 2.2.0, annotation		
or	built from Ensembl Mus_musculus.GRCm38.90.chr_patch_hapl_scaff.gtf		
GRCm38_vdj			

2. Index column.

Put 10x single cell V(D)J sample index set names (e.g. SI-GA-A3) here.

3. Chemistry column.

This column is not used for scIR-seq data. Put **fiveprime** here as a placeholder if you decide to include the Chemistry column.

4. *DataType* column.

Set it to vdj.

5. FetureBarcodeFile column.

Leave it blank for scIR-seq.

6. Example:

Workflow input

For scIR-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cellranger vdj. Revalant workflow inputs are described below, with required inputs highlighted in bold.

NameDescription	Example	Default
input_Ssm_fike Sheet (contains Sample, Ref-	"gs://fc-e0000000-0000-0000-0000-	
erence, Flowcell, Lane, Index as re-	00000000000/sample_sheet.csv"	
quired and Chemistry, DataType, Fea-		
tureBarcodeFile as optional)		
outputOdirectory	"gs://fc-e000000-0000-0000-0000-	
	000000000000/cellranger_output"	
run_mkfastqu want to run cellranger	true	true
mkfastq		
delete_Inputeteinectories after demux.	false	false
If false, you should delete this folder		
yourself so as to not incur storage		
charges		
force_dedbace pipeline to use this number of	6000	
cells, bypassing the cell detection al-		
gorithm		
vdj_defbwoot align reads to reference V(D)J	false	false
sequences before de novo assembly		
vdj_charitorce the web summary HTML and	TR	
metrics summary CSV to only report		
on a particular chain type. The ac-		
cepted values are: auto for autodetec-		
tion based on TR vs IG representation,		
TR for T cell receptors, IG for B cell		
receptors, all for all chain types	"3.1.0"	"3.1.0"
cellrangellrangaionversion, could be 3.1.0, 3.0.2, 2.2.0	5.1.0	3.1.0
docker Drogkstry registry to use for cell-	"cumulusprod"	"cumulusprod"
ranger_workflow. Options:		-
• "cumulusprod" for Docker Hub		
images;		
• "quay.io/cumulus" for backup		
images on Red Hat registry.		
g		
cellran <u>Evor</u> kask fast <u>registriver</u> registry se for	"gcr.io/broad-cumulus"	"gcr.io/broad-cumulus"
cellranger mkfastq. Default is		
the registry to which only Broad users		
have access. See <i>bcl2fastq</i> for making		
your own registry.		
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a us-
		central1-b us-central1-c
		us-central1-f us-east1-b
		us-east1-c us-east1-d
		us-west1-a us-west1-b
		us-west1-c"
num_cNumber of cpus to request for one	32	32
node for cellranger mkfastq and cell-		
ranger vdj		
memory Memory size string for cellranger mk-	"120G"	"120G"
	1200	1200
fastq and cellranger vdj	1500	1500
mkfast Qptishasptisk space in GB for mkfastq		1500
vdj_disRisslpaspeace in GB needed for cell- ranger vdj	500	500
preemp Nbin ber of preemptible tries	2	2
promption of promption thes		

10.3. Run Cell Ranger tools using cellranger_workflow

Workflow output

See the table below for important scIR-seq outputs.

Name	Туре	Description	
output_fastqs_directory	Array[String]	A list of google bucket urls containing FASTQ files, one	
		url per flowcell.	
output_vdj_directory	Array[String]	A list of google bucket urls containing vdj results, one	
		url per sample.	
metrics_summaries	File	A excel spreadsheet containing QCs for each sample.	
output_web_summary	Array[File]	A list of htmls visualizing QCs for each sample (cell-	
		ranger count output).	
count_matrix	String	gs url for a template count_matrix.csv to run cumulus.	

10.3.6 Build Cell Ranger References

We provide routines wrapping Cell Ranger tools to build references for sc/snRNA-seq, scATAC-seq and single-cell immune profiling data.

Build references for sc/snRNA-seq

We provide a wrapper of cellranger mkref to build sc/snRNA-seq references. Please follow the instructions below.

1. Import cellranger_create_reference

Import *cellranger_create_reference* workflow to your workspace.

See the Terra documentation for adding a workflow. The *cellranger_workflow* workflow is under Broad Methods Repository with name "**cumulus/cellranger_create_reference**".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_create_reference* workflow in the drop-down menu.

2. Upload requred data to Google Bucket

Required data may include input sample sheet, genome FASTA files and gene annotation GTF files.

3. Input sample sheet

If multiple species are specified, a sample sheet in CSV format is required. We describe the sample sheet format below, with required columns highlighted in bold:

Column	Description
Genome	Genome name
Fasta	Location to the genome assembly in FASTA/FASTA.gz format
Genes	Location to the gene annotation file in GTF/GTF.gz format
Attributes	Optional, A list of key:value pairs separated by ;. If set, cellranger mkgtf will be called to filter the user-provided GTF file. See 10x filter with mkgtf for more details

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

See below for an example for building Example:

```
Genome,Fasta,Genes,Attributes
GRCh38,gs://fc-e0000000-0000-0000-0000-0000000000/GRCh38.fa.gz,gs://fc-
→e000000-0000-0000-000000000/GRCh38.gtf.gz,gene_biotype:protein_
→coding;gene_biotype:lincRNA;gene_biotype:antisense
mm10,gs://fc-e0000000-0000-0000-0000-00000000000/mm10.fa.gz,gs://fc-
→e0000000-0000-0000-0000-0000000000/mm10.gtf.gz
```

If multiple species are specified, the reference will built under **Genome** names concatenated by '_and_'s. In the above example, the reference is stored under 'GRCh38_and_mm10'.

4. Workflow input

Required inputs are highlighted in bold. Note that **input_sample_sheet** and **input_fasta**, **input_gtf**, **genome** and attributes are mutually exclusive.

44

NameDescription	Example	Default	
input_Asamphdesheett in CSV format al-	"gs://fc-e000000-		
lows users to specify more than 1	0000-0000-0000-		
genomes to build references (e.g.	000000000000/input_sample_shee	t.csv'	
human and mouse). If a sample			
sheet is provided, input_fasta , in -			
put_gtf , and attributes will be ignored.			
input <u>Ifanta</u> genome reference in either	"gs://fc-e0000000-		
FASTA or FASTA.gz format	0000-0000-0000-		
1710 1710 1710 171.52 Tormat	000000000000/Homo_sapiens.GR	Ch38 dna toplevel fa gz"	
input Igfut gene annotation file in either	"gs://fc-e0000000-		
GTF or GTF.gz format	0000-0000-0000-		
	00000000000/Homo_sapiens.GR	Ch38.94.chr patch hapl	scaff.gtf.gz"
genonGenome reference name. New	refdata-cellranger-vdj-GRCh38-		
reference will be stored in a folder	alts-ensembl-3.1.0		
named genome			
outpuO_utipectbreactory	"gs://fc-e000000-		
	0000-0000-0000-		
	000000000000/cellranger_reference		
attributes list of key:value pairs	"gene_biotype:protein_coding;gen	e_biotype:lincRNA;gene	biotype:antisense
separated by ;. If this op-			
tion is not None, cellranger			
mkgtf will be called to filter the			
user-provided GTF file. See 10x			
filter with mkgtf for more details			
pre_mlfnawe want to build pre-mRNA	true	false	
references, in which we use full			
length transcripts as exons in			
the annotation file. We follow			
10x build Cell Ranger compatible pre-mRNA Reference Package to			
build pre-mRNA references			
ref_versforence version string	Ensembl v94		
cellrangehrangesionersion, could be 3.1.0,	"3.1.0"	"3.1.0"	
3.0.2, or 2.2.0	5.1.0	5.1.0	
docketDockistry egistry to use for cell-	"cumulusprod"	"cumulusprod"	
ranger_workflow. Options:	The second se		
• "cumulusprod" for Docker			
Hub images;			
• "quay.io/cumulus" for			
backup images on Red Hat			
registry.			
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a	
		us-central1-b	
		us-central1-c us-	
		central1-f us-east1-b	
		us-east1-c us-east1-d	
		us-west1-a us-west1- b us-west1-c"	
num_doumber of cpus to request for one	1	b us-west1-c	
node for building indices	1		
memoMemory size string for cellranger-	"32G"	"32G"	
atac mkref		520	
disk_sopational disk space in GB	100 Chapter 10.	Version 0.1.0 July 27,	2018
+ F T T T T T T T T T T T T T T T T T T		2	

5. Workflow output

Name	Туре	Description
output_refere	næile	Gzipped reference folder with name <i>genome.tar.gz</i> . We will also store
		a copy of the gzipped tarball under output_directory specified in the input.
		input.

Build references for scATAC-seq

We provide a wrapper of cellranger-atac mkref to build scATAC-seq references. Please follow the instructions below.

1. Import cellranger_atac_create_reference

Import *cellranger_atac_create_reference* workflow to your workspace.

See the Terra documentation for adding a workflow. The *cellranger_workflow* workflow is under Broad Methods Repository with name "**cumulus/cellranger_atac_create_reference**".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_atac_create_reference* workflow in the drop-down menu.

2. Upload requred data to Google Bucket

Required data include config JSON file, genome FASTA file, gene annotation file (GTF or GFF3 format) and motif input file (JASPAR format).

3. Workflow input

Required inputs are highlighted in bold.

NameDescription	Example	Default
genonGenome reference name. New	refdata-cellranger-atac-mm10-	
reference will be stored in a folder	1.1.0	
named genome	" <i>US</i> 000000 0000 0000	
configCjsomguration file defined in 10x	"gs://fc-e000000-0000-0000- 0000-000000000000/config.json"	
genomics configuration file. Note that links to files in the JSON must	0000-000000000000/coniig.json	
be Google bucket URLs outpuQudirectbryctory	"gs://fc-e000000-	
ourput_manactoresciory	0000-0000-0000-	
	000000000000/cellranger_atac_ref	
cellrangelhratger-vatasionersion, could be 1.1.0	"1.1.0"	"1.1.0"
 dockeDockistryegistry to use for cell-ranger_workflow. Options: "cumulusprod" for Docker Hub images; "quay.io/cumulus" for backup images on Red Hat registry. 	"cumulusprod"	"cumulusprod"
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a us-central1-b us-central1-c us- central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1- b us-west1-c"
memoMemory size string for cellranger- atac mkref	"32G"	"32G"
disk spateonal disk space in GB	100	100
preem Nubber of preemptible tries	2	2

4. Workflow output

Name	Туре	Description
output_refere	output_reference folder with name <i>genome.tar.gz</i> . We will also s a copy of the gzipped tarball under output_directory specified in	
		input.

Build references for single-cell immune profiling data

We provide a wrapper of cellranger mkvdjref to build single-cell immune profiling references. Please follow the instructions below.

1. Import cellranger_vdj_create_reference

Import *cellranger_vdj_create_reference* workflow to your workspace.

See the Terra documentation for adding a workflow. The *cellranger_workflow* workflow is under Broad Methods Repository with name "**cumulus/cellranger_vdj_create_reference**".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_vdj_create_reference* workflow in the drop-down menu.

2. Upload requred data to Google Bucket

Required data include genome FASTA file and gene annotation file (GTF format).

3. Workflow input

Required inputs are highlighted in bold.

NameDescription	Example	Default
input Ifasta genome reference in either	"gs://fc-e0000000-	
FASTA or FASTA.gz format	0000-0000-0000-	
_	000000000000/Homo_sapiens.GI	RCh38.dna.toplevel.fa.gz"
input <u>Ig</u> tiut gene annotation file in either	"gs://fc-e0000000-	
GTF or GTF.gz format	0000-0000-0000-	
e	000000000000/Homo_sapiens.GI	RCh38.94.chr patch hapl so
genonteenome reference name. New	refdata-cellranger-vdj-GRCh38-	
reference will be stored in a folder	alts-ensembl-3.1.0	
named genome		
outpuO_utiprectory_	"gs://fc-e000000-	
	0000-0000-0000-	
	000000000000/cellranger_vdj_ret	ference"
ref_versforence version string	Ensembl v94	
cellrangethrangsionersion, could be 3.1.0,	"3.1.0"	"3.1.0"
3.0.2, or 2.2.0		
docketDockistry egistry to use for cell-	"cumulusprod"	"cumulusprod"
ranger_workflow. Options:		
• "cumulusprod" for Docker		
Hub images;		
• "quay.io/cumulus" for		
backup images on Red Hat		
registry.		
1021501 9.		
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a
Zones Google cloud Zones		us-central1-b
		us-central1-c us-
		central1-f us-east1-b
		us-east1-c us-east1-d
		us-west1-a us-west1-
		b us-west1-c"
memoMemory size string for cellranger-	"32G"	"32G"
atac mkref	520	320
disk_sopprize on al disk space in GB	100	100
preemblighter of preemptible tries	2	2
preempummer of preemptione tries	<u> </u>	2

4. Workflow output

Name	Туре	Description
output_refere	n F äle	Gzipped reference folder with name <i>genome.tar.gz</i> . We will also store a copy of the gzipped tarball under output_directory specified in the input.

10.4 bcl2fastq

10.4.1 License

bcl2fastq license

10.4.2 Docker

Read this tutorial if you are new to Docker and don't know how to write your Dockerfile.

First, you need to download bcl2fastq software from its official website, which requires your registration. After registration, choose its Linux rpm format file for downloading.

Then for a Debian based docker (e.g. continuumio/miniconda3), add the lines below into its Dockerfile to install bcl2fastq:

```
RUN apt-get install --no-install-recommends -y alien unzip
ADD bcl2fastq2-v2-20-0-linux-x86-64.zip /software/
RUN unzip -d /software/ /software/bcl2fastq2-v2-20-0-linux-x86-64.zip && alien -i /

\rightarrowsoftware/bcl2fastq2-v2.20.0.422-Linux-x86_64.rpm && rm /software/bcl2fastq2-v2*
```

where bcl2fastq2-v2-20-0-linux-x86-64.zip is located in the same directory of your Dockerfile file.

You can host your private docker images in the Google Container Registry.

10.4.3 Workflows

Workflows such as **cellranger_workflow** and **dropseq_workflow** provide the option of running bcl2fastq. We provide dockers containing bcl2fastq that are accessible only by members of the Broad Institute. Non-Broad Institute members will have to provide their own docker images.

10.4.4 Example

In this example we create a docker image for running cellranger mkfastq version 3.0.2.

- 1. Create a GCP project or reuse an existing project.
- 2. Enable the Google Container Registry
- 3. Clone the cumulus repository:

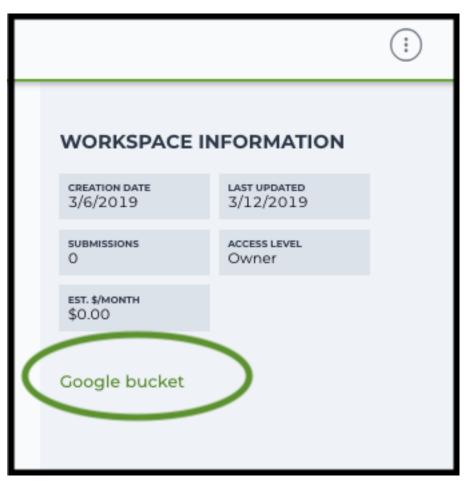
git clone https://github.com/klarman-cell-observatory/cumulus.git

4. Add the lines to cumulus/docker/cellranger/3.0.2/Dockerfile to include bcl2fastq (see *Docker*).

- 5. Ensure you have Docker installed
- 6. Download cellranger from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/ 3.0
- 7. Build, tag, and push the docker. Remember to replace PROJECT_ID with your GCP project id:

```
cd cumulus/docker/cellranger/3.0.2/
docker build -t cellranger-3.0.2 .
docker tag cellranger-3.0.2 gcr.io/PROJECT_ID/cellranger:3.0.2
gcr.io/PROJECT_ID/cellranger:3.0.2
```

8. Import **cellranger_workflow** workflow to your workspace (see cellranger_workflow steps), and enter your docker registry URL (in this example, "gcr.io/PROJECT_ID/") in cellranger_mkfastq_docker_registry field of cellranger_workflow inputs.


10.5 Extract gene-count matrices from plated-based SMART-Seq2 data

10.5.1 Run SMART-Seq2 Workflow

Follow the steps below to extract gene-count matrices from SMART-Seq2 data on Terra. This WDL aligns reads using *Bowtie 2* and estimates expression levels using *RSEM*.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

```
reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

reuse Google-Cloud-SDK

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

```
gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-

→00000-0000-0000000000/VK18WBC6Z4
```

-m means copy in parallel, -r means copy the directory recursively.

2. Create a sample sheet.

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

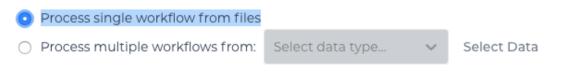
The sample sheet provides metadata for each cell:

Column	Description
Cell	Cell name.
Plate	Plate name. Cells with the same plate name are from the same plate.
Read1	Location of the FASTQ file for read1 in the cloud (gsurl).
Read2	Location of the FASTQ file for read1 in the cloud (gsurl).

Example:

```
Cell,Plate,Read1,Read2
cell-1,plate-1,gs://fc-e000000
```

3. Upload your sample sheet to the workspace bucket.


Example:

4. Import *smartseq2* workflow to your workspace.

See the Terra documentation for adding a workflow. The *smartseq2* workflow is under Broad Methods Repository with name "cumulus/smartseq2".

Moreover, in the workflow page, click Export to Workspace... button, and select the workspace to which you want to export *smartseq2* workflow in the drop-down menu.

5. In your workspace, open smartseq2 in WORKFLOWS tab. Select Process single workflow from files as below

and click SAVE button.

Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

Name	Description	Example	Default
input_	cssaffilde Sheet (contains Cell, Plate, Read1,	"gs://fc-e0000000-0000-0000-0000-	
	Read2)	000000000000/sample_sheet.csv"	
output	t_aureatory	"gs://fc-e000000-0000-0000-0000-	
•		000000000000/smartseq2_output"	
refere	 ncReference transcriptome to align reads to. Acceptable values: Pre-created genome references: "GRCh38" for human; "GRCm38" and "mm10" for mouse. Create a custom genome reference using smartseq2_create_reference workflow, and specify its Google bucket URL here. 	"GRCh38", or "gs://fc-e0000000-0000-0000-0000- 000000000000/rsem_ref.tar.gz"	
smarts	ect MARTOSeq2 version to use. Versions avail- able: 1.0.0.	"1.0.0"	"1.0.0"
docker	 Designation of the second state of th	"cumulusprod"	"cumulusprod
zones	Google cloud zones	"us-east1-d us-west1-a us-west1-b"	"us- east1- d us- west1- a us- west1- b"
num c	piNumber of cpus to request for one node	4	4
	yMemory size string	"3.60G"	"3.60G"
	padeisk space in GB	10	10
	f	-	

Outputs:

See the table below for important outputs.

Name	Туре	Description
output_count_matrix	Array[String]	A list of google bucket urls containing gene-count ma- trices, one per plate. Each gene-count matrix file has the suffix .dge.txt.gz.

This WDL generates one gene-count matrix per SMART-Seq2 plate. The gene-count matrix uses Drop-Seq format:

- The first line starts with "Gene" and then gives cell barcodes separated by tabs.
- Starting from the second line, each line describes one gene. The first item in the line is the gene name and the rest items are TPM-normalized count values of this gene for each cell.

The gene-count matrices can be fed directly into cumulus for downstream analysis.

TPM-normalized counts are calculated as follows:

- 1. Estimate the gene expression levels in TPM using RSEM.
- 2. Suppose c reads are achieved for one cell, then calculate TPM-normalized count for gene i as TPM_i / 1e6 * c.

TPM-normalized counts reflect both the relative expression levels and the cell sequencing depth.

10.5.2 Custom Genome

We also provide a way of generating user-customized Genome references for SMART-Seq2 workflow.

1. Import smartseq2_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow. The smartseq2_create_reference workflow is under Broad Methods Repository with name "cumulus/smartseq2_create_reference".

Moreover, in the workflow page, click Export to Workflow... button, and select the workspace to which you want to export smartseq2_create_reference in the drop-down menu.

2. In your workspace, open smartseq2_create_reference in WORKFLOWS tab. Select Process single workflow from files as below

and click SAVE button.

Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

Name	Description	Type or Example	Default
fasta	Genome fasta file		
		File.	
		For example,	
		"gs://fc-e0000000-0000-0000-0000-	
		00000000000/Homo_sapiens.GRCh38.dna.prir	nary assembly.
		- 1 1	55
gtf	GTF gene annotation file (e.g.		
	Homo_sapiens.GRCh38.83.gtf)	File.	
		For example, "gs://fc-e0000000-0000-0000-0000-	
		00000000000/Homo_sapiens.GRCh38.83.gtf"	
		00000000000000000000000000000000000000	
smarts	eq2_version	String	"1.0.0"
	SMART-Seq2 version to use.		
	Versions available: 1.0.0.		
docker	_ IDgiskey registry to use. Options:	String	"cumulusproo
	 "cumulusprod" for Docker Hub images; 		
	 "quay.io/cumulus" for backup images on 		
	Red Hat registry.		
zones	Google cloud zones	String	"us-
			east1-
			b us-
			east1-
			c us-
			east1-
			d"
cpu	Number of CPUs	Integer	8
	yMemory size string	String	"7.2G"
	lis <u>Ex</u> tspadissk space in GB	Integer	15
preem	tillember of preemptible tries	Integer	2

Outputs

Name	Туре	Description
reference	File	The custom Genome reference generated. Its default file
		<pre>name is rsem_ref.tar.gz.</pre>

10.6 Drop-seq pipeline

This workflow follows the steps outlined in the Drop-seq alignment cookbook from the McCarroll lab, except the default STAR aligner flags are *-limitOutSJcollapsed 1000000 -twopassMode Basic*. Additionally the pipeline provides the option to generate count matrices using dropEst. 1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

	WORKSPACE IN	FORMATION	
	CREATION DATE 3/6/2019	LAST UPDATED 3/12/2019	
	SUBMISSIONS O	Access level Owner	
	est. \$/моnth \$0.00		
\langle	Google bucket	>	

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

reuse UGER qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

```
reuse Google-Cloud-SDK
```

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

```
gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-

→00000-0000-0000000000/VK18WBC6Z4
```

-m means copy in parallel, -r means copy the directory recursively.

2. Non Broad Institute users that wish to run bcl2fastq must create a custom docker image.

See *bcl2fastq* instructions.

3. Create a sample sheet.

Please note that the columns in the CSV must be in the order shown below and does not contain a header line. The sample sheet provides either the FASTQ files for each sample if you've already run bcl2fastq or a list of BCL directories if you're starting from BCL directories. Please note that BCL directories must contain a valid bcl2fastq sample sheet (SampleSheet.csv):

Column	Description
Name	Sample name.
Read1	Location of the FASTQ file for read1 in the cloud (gsurl).
Read2	Location of the FASTQ file for read2 in the cloud (gsurl).

Example using FASTQ input files:

Note that in this example, sample-1 was sequenced across two flowcells.

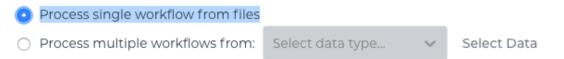
Example using BCL input directories:

Note that the flow cell directory must contain a bcl2fastq sample sheet named SampleSheet.csv.

4. Upload your sample sheet to the workspace bucket.

Example:

```
gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-


$\overline$0000-0000000000/
```

5. Import *dropseq_workflow* workflow to your workspace.

See the Terra documentation for adding a workflow. The *dropseq_workflow* is under Broad Methods Repository with name "cumulus/dropseq_workflow".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace you want to export *dropseq_workflow* workflow in the drop-down menu.

6. In your workspace, open dropseq_workflow in WORKFLOWS tab. Select Process single workflow from files as below

and click the SAVE button.

10.6.1 Inputs

Please see the description of important inputs below.

Name	Description		
input_csv_file	CSV file containing sample name, read1, and read2 or a list of BCL directories.		
output_director	yPipeline output directory (gs URL e.g. "gs://fc-e0000000-0000-0000-0000-0000-0000-000		
reference	hg19, GRCh38, mm10, hg19_mm10, mmul_8.0.1 or a path to a custom reference JSON file		
run_bcl2fastq	Whether your sample sheet contains one BCL directory per line or one sample per line (default false)		
run_dropseq_to	oWhether to generate count matrixes using Drop-Seq tools from the McCarroll lab (default true)		
run_dropest	Whether to generate count matrixes using dropEst (default false)		
cellular_barcod	cellular_barcode_Ophitedistwhitelist of known cellular barcodes		
drop_seq_tools_forsepptied, bypass the cell detection algorithm (the elbow method) and use this number of cells.			
dropest_cells_maximal number of output cells			
dropest_genes_	nWinimal number of genes for cells after the merge procedure (default 100)		
·	eigerestation the merge procedure (default 0.2)		
dropest_max_c	b <u>Maærgeli</u> edis <u>t</u> anstanbeeween barcodes (default 2)		
	nManergit_disitantistantween UMIs (default 1)		
dropest_min_gen Vekinburfahrenumebege of genes for cells before the merge procedure. Used mostly for optimization. (default 10)			
dropest_merge	Edescoptesscipteenise ge strategy (can be slow), recommended to use when the list of real barcodes is		
	not available (default true)		
dropest_velocy	toSave separate count matrices for exons, introns and exon/intron spanning reads (default true)		
trim_sequence	The sequence to look for at the start of reads for trimming (default "AAGCAGTGGTAT-		
	CAACGCAGAGTGAATGGG")		
trim_num_base	s How many bases at the beginning of the sequence must match before trimming occur (default 5)		
	e The base location of the molecular barcode (default 13-20)		
cellular_barcode_Tbasbasanlgc ation of the cell barcode (default 1-12)			
star_flags	Additional options to pass to STAR aligner		

Please note that run_bcl2fastq must be set to true if you're starting from BCL files instead of FASTQs.

Custom Genome JSON

{

If you're reference is not one of the predefined choices, you can create a custom JSON file. Example:

(continues on next page)

(continued from previous page)

```
"star_cpus": 32,
"star_memory": "120G"
```

The fields star_cpus and star_memory are optional and are used as the default cpus and memory for running STAR with your genome.

10.6.2 Outputs

}

The pipeline outputs a list of google bucket urls containing one gene-count matrix per sample. Each gene-count matrix file produced by Drop-seq tools has the suffix 'dge.txt.gz', matrices produced by dropEst have the extension .rds.

Building a Custom Genome

The tool dropseq_bundle can be used to build a custom genome. Please see the description of important inputs below.

Name	Description		
fasta_file	Array of fasta files. If more than one species, fasta and gtf files must be in the same order.		
gtf_file	Array of gtf files. If more than one species, fasta and gtf files must be in the same order.		
genomeSAinde	genomeSAindex Nbases (bases) of the SA pre-indexing string. Typically between 10 and 15. Longer strings will		
	use much more memory, but allow faster searches. For small genomes, must be scaled down to		
min(14, log2(GenomeLength)/2 - 1)			

dropseq_workflow Terra Release Notes

Version 5

• Split preprocessing steps into separate tasks (FastqToSam, TagBam, FilterBam, and TrimBam).

Version 4

- Handle uncompressed fastq files as workflow input.
- Added optional prepare_fastq_disk_space_multiplier input.

Version 3

• Set default value for docker_registry input.

Version 2

• Added docker_registry input.

Version 1

- Renamed cumulus to cumulus
- Added use_bases_mask option when running bcl2fastq

Version 18

· Created a separate docker image for running bcl2fastq

Version 17

• Fixed bug that ignored WDL input star_flags (thanks to Carly Ziegler for reporting)

• Changed default value of star_flags to the empty string (Prior versions of the WDL incorrectly indicated that basic 2-pass mapping was done)

Version 16

- Use cumulus dockerhub organization
- Changed default dropEst version to 0.8.6

Version 15

• Added drop_deq_tools_prep_bam_memory and drop_deq_tools_dge_memory options

Version 14

· Fix for downloading files from user pays buckets

Version 13

• Set GCLOUD_PROJECT_ID for user pays buckets

Version 12

• Changed default dropEst memory from 52G to 104G

Version 11

• Updated formula for computing disk size for dropseq_count

Version 10

· Added option to specify merge_bam_alignment_memory and sort_bam_max_records_in_ram

Version 9

• Updated default drop_seq_tools_version from 2.2.0 to 2.3.0

Version 8

• Made additional options available for running dropEst

Version 7

• Changed default dropEst memory from 104G to 52G

Version 6

• Added option to run dropEst

Version 5

• Specify full version for bcl2fastq (2.20.0.422-2 instead of 2.20.0.422)

Version 4

• Fixed issue that prevented bcl2fastq from running

Version 3

- Set default run_bcl2fastq to false
- · Create shortcuts for commonly used genomes

Version 2

• Updated QC report

Version 1

• Initial release

10.7 Demultiplex cell-hashing/nuclei-hashing data using demuxEM or prepare for CITE-Seq analysis

Follow the steps below to run cumulus for cell-hashing/nuclei-hashing/CITE-Seq data on Terra.

1. Run Cell Ranger tool to generate raw gene count matrices and antibody hashtag data.

Please refer to the cellranger_workflow tutorial for details.

When finished, you should be able to find the raw gene count matrix (e.g. raw_gene_be_matrices_h5.h5) and ADT count matrix (e.g. sample_1_ADT.csv) for each sample.

2. Create a sample sheet, **sample_sheet_hashing.csv**, which describes the metadata for each pair of RNA and antibody hashtag data. The sample sheet should contain 4 columns — *OUTNAME*, *RNA*, *ADT*, and *TYPE*. *OUTNAME* is the output name for one pair of RNA and ADT data. *RNA* and *ADT* are the raw gene count matrix and the ADT count matrix generated in Step 1, respectively. *TYPE* is the assay type, which can be cell-hashing, nuclei-hashing, or cite-seq.

Example:

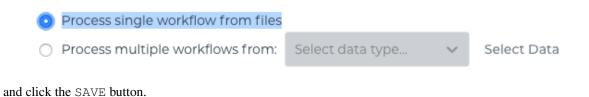
Note that in the example above, sample_2 is 10x genomics' v3 chemistry. Cumulus can automatically detect v2/v3 chemistry when loading hdf5 files.

3. Create an additional antibody-control sheet **antibody_control.csv** if you have CITE-Seq data. This sheet contains 2 columns — *Antibody* and *Control*.

Example:

```
Antibody,Control
CD8,Mouse-IgG1
HLA-ABC,Mouse-IgG2a
CD45RA,Mouse-IgG2b
```

4. Upload your sample sheets to the Google bucket of your workspace.


Example:

5. Import *cumulus_hashing_cite_seq* to your workspace.

See the Terra documentation for adding a workflow. The *cumulus_hashing_cite_seq* workflow is under Broad Methods Repository with name "cumulus/cumulus_hashing_cite_seq".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cumulus_hashing_cite_seq* workflow in the drop-down menu.

6. In your workspace, open cumulus_hashing_cite_seq in WORKFLOWS tab. Select Process single workflow from files as below

10.7.1 cumulus_hashing_cite_seq inputs:

-			c"
nalysis			us-west1-
0.7. Demul	tiplex cell-hashing/nuclei-hashing data using dem	uxEM or prepare for CIT	us-west1-a E-Seg _{est1-b} 63
			us-east1-d
			us-east1-c
			us-east1-b
			central1-f
			c us-
			central1-
			b us-
			central1-
			a us-
201100		west1-b"	central1-
zones	Google cloud zones	"us-east1-d us-west1-a us-	"us-
	registry.		
	"quay.io/cumulus" for backup images on Red Hat		
uoenei_iegis	• "cumulusprod" for Docker Hub images;	cumurusprou	Cumuluspio
docker regio	tr Docker registry to use. Options:	"cumulusprod"	"cumuluspro
cumulus_ver	sionmulus version to use. Versions available: 0.12.0, 0.11.0, 0.10.0.	"0.12.0"	"0.12.0"
1		0000000000000/antibody_cc	
	the IgG control information for each antibody.	0000-0000-0000-	
antibody_coi	tronergev_rna_adt parameter. This is a CSV file containing	"gs://fc-e000000-	
	list of gene names	// // / 0000000	
	muxEM_generate_gender_plot> is a comma-separated		
	ing gender-specific genes (e.g. Xist). <de-< td=""><td></td><td></td></de-<>		
demuxEM_g	endenatex Edd deranalmeter. If generate violin plots us-	"XIST"	
	butions of cells and non-cells etc		
	counts, estimated background probabilities, HTO distri-		
	tic plots, including the background/signal between HTO		
demuxEM_g	endenate x Elso generate a series of diagnos-	true	true
	from others		
	KMeans algorithm to separate empty ADT droplets		
demuxEM_r	and termus Eater parameter. The random seed used in the	0	0
	known. [default: 10.0]		
	<count> hashtags from the signal will be marked as un-</count>		
demuxEM_n	ninlessinguxHMhapshutageneter. Any cell/nucleus with less than	10.0	10.0
	with at least <demuxem_min_num_umis> of UMIs.</demuxem_min_num_umis>		
demuxEM_n	idenum EM hiparameter. Only demultiplex cells/nuclei	200	100
	make the prior sparse.		
	parameter (alpha) on samples. An alpha value < 1.0 will		
demuxEM_a	planmxEMmplesmeter. The Dirichlet prior concentration	2.0	0.0
	genes		
	with at least <demuxem_min_num_genes> expressed</demuxem_min_num_genes>		
demuxEM_n	nid <u>emun Egen</u> erarameter. Only demultiplex cells/nuclei	200	100
-	infer the genome name from data		
genome	Reference genome name. If not provided, cumulus will	"GRCh38"	
	this directory	000000000000/my_demux_	dir"
I —	There will be one folder per RNA-ADT data pair under	0000-0000-0000-	
output_dire	ctory is the output directory (gs url + path) for all results.	"gs://fc-e0000000-	
		000000000000/sample_she	et_hashing.csv
I – I	data pairing	0000-0000-0000-	
mput samp	elsheetCSV file describing metadata of RNA and ADT	"gs://fc-e0000000-	
innut samn			

10.7.2 cumulus_hashing_cite_seq outputs

See the table below for important *cumulus_hashing_cite_seq* outputs:

Name	Туре	Description
output_folder	Array[String]	A list of google bucket urls containing results for every
		RNA-ADT data pairs.

In the output folder of each cell-hashing/nuclei-hashing RNA-ADT data pair, you can find the following files:

Name	Description		
output_name_demux.h5ad	Demultiplexed RNA count matrix in h5ad format.		
output_name_demux.h5sc	RNA expression matrix with demultiplexed sample identities in cumulus		
	hdf5 (h5sc) format.		
output_name_ADTs.h5ad	Antibody tag matrix in h5ad format.		
output_name.ambient_hashtag.hist.pngOptional output. A histogram plot depicting hashtag distributions of en			
droplets and non-empty droplets.			
output_name.background_probabilities Optiongl output. A bar plot visualizing the estimated hashtag background			
probability distribution.			
output_name.real_content.hist.png	ontent.hist.png Optional output. A histogram plot depicting hashtag distributions of not-		
	real-cells and real-cells as defined by total number of expressed genes in		
	the RNA assay.		
output_name.rna_demux.hist.png	Optional output. A histogram plot depicting RNA UMI distribution for sin-		
	glets, doublets and unknown cells.		
output_name.gene_name.violin.png	png Optional outputs. Violin plots depicting gender-specific gene expres-		
	sion across samples. We can have multiple plots if a gene list		
is provided in demuxEM_generate_gender_plot field of o			
lus_hashing_cite_seq inputs.			

In the output folder of each CITE-Seq RNA-ADT data pair, you can find the following file:

Name	Description
output_name.h5sc	A Cumulus hdf5 format (h5sc) file containing both RNA and ADT count
	matrices.

10.7.3 Load demultiplexing results into Python and R

To load demultiplexing results into Python, you need to install Python package anndata first. Then follow the codes below:

```
import anndata
data = anndata.read_h5ad('output_name_demux.h5ad')
```

Once you load the data object, you can find predicted droplet types (singlet/doublet/unknown) in data. obs['demux_type']. You can find predicted sample assignments in data.obs['assignment']. You

can find estimated sample fractions (sample1, sample2, ..., samplen, background) for each droplet in data. obsm['raw_probs'].

To load the results into R, you need to install R package reticulate in addition to Python package anndata. Then follow the codes below:

```
library(reticulate)
ad <- import("anndata", convert = FALSE)
data <- ad$read_h5ad("output_name_demux.h5ad")</pre>
```

Results are in data\$obs['demux_type'], data\$obsm['raw_probs'].

```
data$obs['assignment'], and
```

10.8 Run Cumulus for sc/snRNA-Seq data analysis

10.8.1 Run Cumulus analysis

Prepare Input Data

Case One: Sample Sheet

Follow the steps below to run **cumulus** on Terra.

- 1. Create a sample sheet, **count_matrix.csv**, which describes the metadata for each sample count matrix. The sample sheet should at least contain 2 columns *Sample* and *Location*. *Sample* refers to sample names and *Location* refers to the location of the channel-specific count matrix in either of
- 10x format with v2 chemistry. For example, gs://fc-e0000000-0000-0000-0000-000000000/ my_dir/sample_1/filtered_gene_bc_matrices_h5.h5.
- 10x format with v3 chemistry. For example, gs://fc-e0000000-0000-0000-0000-000000000/ my_dir/sample_1/filtered_feature_bc_matrices.h5.
- Drop-seq format. For example, gs://fc-e0000000-0000-0000-000000000000/my_dir/ sample_2/sample_2.umi.dge.txt.gz.
- csv format. If it is HCA DCP csv format, we expect the expression file has the name of expression. csv. In addition, we expect that cells.csv and genes.csv files are located under the same folder as the expression.csv. For example, gs://fc-e0000000-0000-0000-0000-00000000000/my_dir/sample_3/.
- tsv or loom format.

Additionally, an optional Reference column can be used to select samples generated from a same reference (e.g. mm10). If the count matrix is in either DGE, mtx, csv, tsv, or loom format, the value in this column will be used as the reference since the count matrix file does not contain reference name information. The only exception is mtx format. If users do not provide a Reference column, we will use the basename of the folder containing the mtx file as its reference. In addition, the Reference column can be used to aggregate count matrices generated from different genome versions or gene annotations together under a unified reference. For example, if we have one matrix generated from mm9 and the other one generated from mm10, we can write mm9_10 for these two matrices in their Reference column. Pegasus will change their references to 'mm9_10' and use the union of gene symbols from the two matrices as the gene symbols of the aggregated matrix. For HDF5 files (e.g. 10x v2/v3), the reference name contained in the file does not need to match the value in this column. In fact, we use this column to rename references in HDF5 files. For example, if we have two HDF files, one generated from mm9 and the other generated from mm10. We can set these two files' Reference column value to 'mm9_10', which will rename their reference names into mm9_10 and the aggregated matrix will contain all genes from either mm9 or mm10. This renaming feature does not work if one HDF5 file contain multiple references (e.g. mm10 and GRCh38).

You are free to add any other columns and these columns will be used in selecting channels for futher analysis. In the example below, we have *Source*, which refers to the tissue of origin, *Platform*, which refers to the sequencing platform, *Donor*, which refers to the donor ID, and *Reference*, which refers to the reference genome.

Example:

If you ran **cellranger_workflow** ahead, you should already obtain a template **count_matrix.csv** file that you can modify from **generate_count_config**'s outputs.

1. Upload your sample sheet to the workspace.

Example:

```
gsutil cp /foo/bar/projects/my_count_matrix.csv gs://fc-e0000000-0000-

$\log_0000-0000-00000000000/
```

2. Import cumulus workflow to your workspace.

See the Terra documentation for adding a workflow. The *cumulus* workflow is under Broad Methods Repository with name "**cumulus/cumulus**".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cumulus* workflow in the drop-down menu.

3. In your workspace, open cumulus in WORKFLOWS tab. Select Process single workflow from files as below

Process single workflow from files
 Process multiple workflows from: Select data type... V Select Data

and click the SAVE button.

Case Two: Single File

Alternatively, if you only have one single count matrix for analysis, you can go without sample sheets. **Cumulus** currently supports the following formats:

- 10x genomics v2/v3 format (hdf5);
- Drop-seq dge format;
- csv (no HCA DCP format), tsv or loom formats.

Simply upload your data to the Google Bucket of your workspace, and specify its URL in input_file field of Cumulus' global inputs (see below). Notice that for dge and loom files, the genome field in global inputs is required.

In this case, the **aggregate_matrices** step will be skipped.

Cumulus steps:

Cumulus processes single cell data in the following steps:

- 1. **aggregate_matrices** (optional). When given a CSV format sample sheet, this step aggregates channel-specific count matrices into one big count matrix. Users can specify which channels they want to analyze and which sample attributes they want to import to the count matrix in this step. Otherwise, if a single count matrix file is given, skip this step.
- 2. **cluster**. This is the main analysis step. In this step, **Cumulus** performs low quality cell filtration, highly variable gene selection, batch correction, dimension reduction, diffusion map calculation, graph-based clustering and 2D visualization calculation (e.g. t-SNE/UMAP/FLE).
- 3. **de_analysis**. This step is optional. In this step, **Cumulus** can calculate potential markers for each cluster by performing a variety of differential expression (DE) analysis. The available DE tests include Welch's t test, Fisher's exact test, and Mann-Whitney U test. **Cumulus** can also calculate the area under ROC (AUROC) curve values for putative markers. If find_markers_lightgbm is on, **Cumulus** will try to identify cluster-specific markers by training a LightGBM classifier. If the samples are human or mouse immune cells, **Cumulus** can also optionally annotate putative cell types for each cluster based on known markers.
- 4. **plot**. This step is optional. In this step, **Cumulus** can generate 6 types of figures based on the **cluster** step results:
 - **composition** plots which are bar plots showing the cell compositions (from different conditions) for each cluster. This type of plots is useful to fast assess library quality and batch effects.
 - tsne, fitsne, and net_tsne: t-SNE like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **umap** and **net_umap**: UMAP like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **fle** and **net_fle**: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.

- **diffmap** plots which are 3D interactive plots showing the diffusion maps. The 3 coordinates are the first 3 PCs of all diffusion components.
- If input is CITE-Seq data, there will be **citeseq_fitsne** plots which are FIt-SNE plots based on epitope expression.
- 5. organize_results. Copy analysis results from execution environment to destination location on Google bucket.

In the following sections, we will first introduce global inputs and then introduce the WDL inputs and outputs for each step separately. But please note that you need to set inputs from all steps simultaneously in the Terra WDL.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.

global inputs

Name	Description	Example	Default
input_file	Input CSV sample sheet describing metadata of each	"gs://fc-e0000000-	
	10x channel, or a single input count matrix file	0000-0000-0000-	
		000000000000/my_count_i	natrix.csv"
output_nam	e This is the prefix for all output files. It should con-	"gs://fc-e000000-	
	tain the google bucket url, subdirectory name and output	0000-0000-0000-	
	name prefix	000000000000/my_results_	dir/my_results'
cumulus_ver	sionmulus version to use. Versions available: 0.12.0,	"0.12.0"	"0.12.0"
	0.11.0, 0.10.0.		
docker_regis	 tr Docker registry to use. Options: "cumulusprod" for Docker Hub images; "quay.io/cumulus" for backup images on Red Hat registry. 	"cumulusprod"	"cumulusproc
zones	Google cloud zones to consider for execution.	"us-east1-d us-west1-a us- west1-b"	"us- central1-
		west1-0	a us-
			central1-
			b us-
			central1-
			c us-
			central1-f
			us-east1-b
			us-east1-c
			us-east1-d
			us-west1-a
			us-west1-b
			us-west1-
			c"
num_cpu	Number of CPUs per Cumulus job	32	64
memory	Memory size string	"200G"	"200G"
disk_space	Total disk space in GB	100	100
preemptible	Number of preemptible tries	2	2

aggregate_matrices

aggregate_matrices inputs

Name	Description	Example	Default
restrictions	Select channels that satisfy all restrictions. Each restric-	"Source:bone_marrow;Plat	orm:NextSeq"
	tion takes the format of name:value,,value. Multiple		
	restrictions are separated by ';'		
attributes	Specify a comma-separated list of outputted attributes.	"Source,Platform,Donor"	
	These attributes should be column names in the		
	count_matrix.csv file		
default_refer	endeesample count matrix is in either DGE, mtx, csv, tsv	"GRCh38"	
	or loom format and there is no Reference column in the		
	csv_file, use default_reference as the reference.		
select_only_s	side the state of the second state of the seco	true	false
	will make cumulus only include barcodes that are pre-		
	dicted as singlets.		
minimum_nu	nOnely of <u>egenbarcodes</u> with at least this number of ex-	100	100
	pressed genes		

aggregate_matrices output

Name	Туре	Description
output_h5sc	File	Aggregated count matrix in Cumulus hdf5 (h5sc) format

cluster

cluster inputs

Name	Description	Example	Default
considered_r	efA string contains comma-separated reference(e.g.	"mm10"	
	genome) names. Cumulus will read all groups associ-		
	ated with reference names in the list from the input file.		
	If considered_refs is None, all groups will be consid-		
	ered.		
channel	Specify the cell barcode attribute to represent different	"Donor"	
	samples.		
black_list	Cell barcode attributes in black list will be poped out.	"attr1,attr2,attr3""	
	Format is "attr1,attr2,,attrn".		
min_genes_o	nIframput are raw 10x matrix, which include all barcodes,	100	100
	perform a pre-filtration step to keep the data size small.		
	In the pre-filtration step, only keep cells with at least		
	<min_genes_on_raw> of genes</min_genes_on_raw>		

Continued on next page

Name	Description	Example	Default
cite_seq		false	false
	Data are CITE-Seq data. cumulus will perform		
	analyses on RNA count matrix first.		
	Then it will attach the ADT matrix to the RNA matrix		
	with all antibody names changing to 'AD-' +		
	antibody_name.		
	Lastly, it will embed the antibody expression using		
	FIt-SNE (the basis used for plotting is 'citeseq_fitsne')		
cite_seq_cap	pifigr CITE-Seq surface protein expression, make all cells	10.0	99.99
	with expression > <percentile> to the value at <per-< td=""><td></td><td></td></per-<></percentile>		
	centile> to smooth outlier. Set <percentile> to 100.0</percentile>		
	to turn this option off.		
select_only_s	singhets have demultiplexed data, turning on this option	false	false
	will make cumulus only include barcodes that are pre-		
	dicted as singlets		
	iolf_wersteltsell and gene filtration results to a spreadsheet	true	true
	_lfepuldtsfiltration results as PDF files	true	true
plot_filtration	Figsize size for filtration plots. <figsize> is a comma-</figsize>	6,4	
	separated list of two numbers, the width and height of		
	the figure (e.g. 6,4)		
output_seura	Compatible h5ad file. Caution: File	false	false
	size might be large, do not turn this option on for large		
	data sets.		
output_loom	If generate loom-formatted file	false	false
output_parqu	et f generate parquet-formatted file	false	false
min_genes	Only keep cells with at least <min_genes> of genes</min_genes>	500	500
max_genes	Only keep cells with less than <max_genes> of genes</max_genes>	6000	6000
min_umis	Only keep cells with at least <min_umis> of UMIs</min_umis>	100	100
max_umis	Only keep cells with less than <max_umis> of UMIs</max_umis>	600000	600000
mito_prefix	Prefix of mitochondrial gene names. This is to identify	"mt-"	"MT-"
-1	mitochondrial genes.		
percent_mito		50	10.0
-	cent_mito>% of total counts		
gene_percent		50	0.05
	<pre><gene_percent_cells>% of cells to select variable</gene_percent_cells></pre>		
	genes		
counts per c	ellostaterounts per cell after normalization, before trans-	1e5	1e5
—r · —·	forming the count matrix into Log space.		
select hvf fl	avdrighty variable feature selection method. Options:	"pegasus"	"pegasus"
	• "pegasus": New selection method proposed in		1.0.0
	Pegasus, the analysis module of Cumulus work-		
	flow.		
	• "Seurat": Conventional selection method used by		
	Seurat and SCANPY.		
select byf n	gesnetect top <select_hvf_ngenes> highly variable fea-</select_hvf_ngenes>	2000	2000
	tures. If <select_hvf_flavor> is "Seurat" and <se-< td=""><td>2000</td><td>2000</td></se-<></select_hvf_flavor>	2000	2000
		1	1
	lect_hvf_ngenes> is "None", select HVGs with z-score		

Table	1 – continued from previous page
-------	----------------------------------

Continued on next page

Name	Description	Example	Default
no_select_hv	f Do not select highly variable features.	false	false
	_Effantrect batch effects	false	false
batch_group_		"Donor"	None
	Random number generator seed	0	0
nPC	Number of principal components	50	50
knn_K	Number of nearest neighbors used for constructing affinity matrix.	50	100
-	eFor the sake of reproducibility, we only run one thread for building kNN indices. Turn on this option will allow multiple threads to be used for index building. How- ever, it will also reduce reproducibility due to the racing between multiple threads.	false	false
run_diffmap	Whether to calculate diffusion map or not. It will be automatically set to true when input run_fle or run_net_fle is set.	false	false
diffmap_ndc		100	100
diffmap_max	t Maximum time stamp in diffusion map computation to search for the knee point.	5000	5000
run_louvain	Run Louvain clustering algorithm	true	true
louvain_resol	uRenolution parameter for the Louvain clustering algorithm	1.3	1.3
louvain_class	_Labervain cluster label name in analysis result.	"louvain_labels"	"louvain_label
run_leiden	Run Leiden clustering algorithm.	false	false

Table 1	- continued	from	previous	page
---------	-------------	------	----------	------

Continued on next page

	Table 1 – continued from previou		
Name	Description	Example	Default
leiden_resolu	tiRusolution parameter for the Leiden clustering algo-	1.3	1.3
	rithm.		
leiden_niter	Number of iterations of running the Leiden algorithm. If	2	-1
	negative, run Leiden iteratively until no improvement.		
	labeiden cluster label name in analysis result.	"leiden_labels"	"leiden_labels"
	locunais pectral Louvain clustering algorithm	false	false
spectral_louv	alaasissed for KMeans clustering. Use diffusion map	"diffmap"	"diffmap"
	by default. If diffusion map is not calculated, use PCA		
	coordinates. Users can also specify "pca" to directly use		
	PCA coordinates.		
	a Resolutiop arameter for louvain.	1.3	1.3
spectral_louv	aßpedasal labelain label name in analysis result.	"spectral_louvain_labels"	"spectral_louvain_labels"
run_spectral	laRdenSpectral Leiden clustering algorithm.	false	false
spectral_leid	enBasisisused for KMeans clustering. Use diffusion map	"diffmap"	"diffmap"
	by default. If diffusion map is not calculated, use PCA		
	coordinates. Users can also specify "pca" to directly use		
	PCA coordinates.		
spectral_leid	en <u>R</u> essolutionparameter for leiden.	1.3	1.3
spectral_leid	enSpætassallabiden label name in analysis result.	"spectral_leiden_labels"	"spectral_leiden_labels"
run_tsne	Run multi-core t-SNE for visualization	false	false
tsne_perplex	ty-SNE's perplexity parameter, also used by FIt-SNE.	30	30
run_fitsne	Run FIt-SNE for visualization	true	true
run_umap	Run UMAP for visualization	false	false
umap_K	K neighbors for UMAP.	15	15
	isUMAP parameter.	0.5	0.5
umap_spread	UMAP parameter.	1.0	1.0
run_fle	Run force-directed layout embedding (FLE) for visual-	false	false
	ization		
fle_K	Number of neighbors for building graph for FLE	50	50
	anlgargperchander per node to stop FLE.	2.0	2.0
fle_target_ste	pMaximum number of iterations before stopping the al-	5000	5000
	goritm		
net_down_sa	mplex fraction for net-related visualization	0.1	0.1
run_net_tsne	Run Net tSNE for visualization	false	false
	Basis name for Net t-SNE coordinates in analysis result	"net_tsne"	"net_tsne"
	pRun Net UMAP for visualization	false	false
	t Bassissname for Net UMAP coordinates in analysis result	"net_umap"	"net_umap"
run_net_fle	Run Net FLE for visualization	false	false
net_fle_out_l	baBiasis name for Net FLE coordinates in analysis result.	"net_fle"	"net_fle"
	wasasis name for thet FLE coordinates in analysis result.		lici_lic

Table 1 – continued from previous page

cluster outputs

Name	Туре	Description
output_h5ad	File	
		Output file in h5ad format (output_name.h5ad).
		To load this file in Python, you need to first install Pegasus on your local
		machine. Then use import pegasus as pg; data =
		<pre>pg.read_input('output_name.h5ad') in Python interpreter.</pre>
		The log-normalized expression matrix is stored in data.X as a
		CSR-format sparse matrix.
		The obs field contains cell related attributes, including clustering results.
		For example, data.obs_names records cell barcodes;
		data.obs['Channel'] records the channel each cell comes from;
		<pre>data.obs['n_genes'], data.obs['n_counts'], and</pre>
		data.obs['percent_mito'] record the number of expressed genes.
		total UMI count, and mitochondrial rate for each cell respectively;
		<pre>data.obs['louvain_labels'],</pre>
		<pre>data.obs['leiden_labels'],</pre>
		<pre>data.obs['spectral_louvain_labels'], and data_abs['spectral_loiden_labels']</pre>
		<pre>data.obs['spectral_leiden_labels'] record each cell's cluster labels using different clustring algorithms;</pre>
		The var field contains gene related attributes.
		For example, data.var_names records gene symbols,
		data.var['gene_ids'] records Ensembl gene IDs, and
		data.var['highly_variable_features'] records selected
		variable genes.
		The obsm field records embedding coordinates.
		For example, data.obsm['X_pca'] records PCA coordinates,
		data.obsm['X_tsne'] records t-SNE coordinates,
		data.obsm['X_umap'] records UMAP coordinates,
		data.obsm['X_diffmap'] records diffusion map coordinates,
		data.obsm['X_diffmap_pca'] records the first 3 PCs by
		projecting the diffusion components using PCA,
		and data.obsm['X_fle'] records the force-directed layout
		coordinates from the diffusion components.
		The varm field records DE analysis results if performed:
		<pre>data.varm['de_res'].</pre>
		The uns field stores other related information, such as reference genome
		(data.uns['genome']), kNN on PCA coordinates
		(data.uns['pca_knn_indices'] and
		<pre>data.uns['pca_knn_distances']), etc.</pre>
output_log	File	This is a copy of the logging module output, containing important interme
		diate messages
output_seurat_h	5adFile	h5ad file in seurat-compatible manner. This file can be loaded into R and
1 – –		converted into a Seurat object (see here for instructions)
output_filt_xlsx	File	
		Spreadsheet containing filtration results (output_name.filt.xlsx).
		This file has two sheets — Cell filtration stats and Gene filtration stats.
		The first sheet records cell filtering results and it has 10 columns:
		Channel, channel name; kept, number of cells kept; median_n_genes,
0.8. Run Cum	ulus for sc/si	nRNA-Seqidata analysis pressed genes in kept cells; median_n_genes,
		number of UMIs in kept cells;
		median_percent_mito, median mitochondrial rate as UMIs between
		mitochondrial genes and all genes in kept cells;

de_analysis

de_analysis inputs

Name	Description	Example	Default
perform_de_	arlalpsisform differential expression (DE) analysis	true	true
cluster_label	s Specify the cluster label used for DE analysis	"louvain_labels"	"louvain_labels"
alpha	Control false discovery rate at <alpha></alpha>	0.05	0.05
auc	Calculate area under ROC (AUROC)	true	true
fisher	Calculate Fisher's exact test	true	true
t_test	Calculate Welch's t-test.	true	true
mwu	Calculate Mann-Whitney U test	false	false
find_markers	Lightgodetect markers using LightGBM	false	false
remove_ribo	Remove ribosomal genes with either RPL or RPS as	false	false
	prefixes. Currently only works for human data		
min_gain	Only report genes with a feature importance score (in	1.0	1.0
	gain) of at least <gain></gain>		
annotate_clu	stef also annotate cell types for clusters based on DE re-	false	false
	sults		
annotate_de_	telefiferential Expression test to use for inference on cell	"ť"	"t"
	types. Options: "t", "fisher", or "mwu"		
organism	Organism, could either be "human_immune",	"mouse_brain"	"human_immun
	"mouse_immune", "human_brain", "mouse_brain"		
	or a Google bucket link to a JSON file describing the		
	markers		
minimum_re	powfinstromen cell type score to report a potential cell type	0.5	0.5

de_analysis outputs

Name	Туре	Description	
output_de_h5ad	File	h5ad-formatted results with DE results updated (output_name.h5ad)	
output_de_xlsx	File	Spreadsheet reporting DE results (output_name.de.xlsx)	
output_markers_xlskile An excel spreadsheet		An excel spreadsheet containing detected markers. Each cluster has one	
		tab in the spreadsheet and each tab has three columns, listing markers that	
		are strongly up-regulated, weakly up-regulated and down-regulated (out-	
		put_name.markers.xlsx)	
output_anno_file	File	Annotation file (output_name.anno.txt)	

How cell type annotation works

In this subsection, we will describe the format of input JSON cell type marker file, the *ad hoc* cell type inference algorithm, and the format of the output putative cell type file.

JSON file

The top level of the JSON file is an object with two name/value pairs:

- title: A string to describe what this JSON file is for (e.g. "Mouse brain cell markers").
- **cell_types**: List of all cell types this JSON file defines. In this list, each cell type is described using a separate object with 2 to 3 name/value pairs:
 - name: Cell type name (e.g. "GABAergic neuron").
 - markers: List of gene-marker describing objects, each of which has 2 name/value pairs:
 - * genes: List of positive and negative gene markers (e.g. ["Rbfox3+", "Flt1-"]).
 - * weight: A real number between 0.0 and 1.0 to describe how much we trust the markers in genes.

All markers in **genes** share the weight evenly. For instance, if we have 4 markers and the weight is 0.1, each marker has a weight of 0.1 / 4 = 0.025.

The weights from all gene-marker describing objects of the same cell type should sum up to 1.0.

- **subtypes**: Description on cell subtypes for the cell type. It has the same structure as the top level JSON object.

See below for an example JSON snippet:

```
"title" : "Mouse brain cell markers",
    "cell_types" : [
      {
        "name" : "Glutamatergic neuron",
        "markers" : [
          {
            "genes" : ["Rbfox3+", "Reln+", "Slc17a6+", "Slc17a7+"],
            "weight" : 1.0
          }
        ],
        "subtypes" : {
          "title" : "Glutamatergic neuron subtype markers",
            "cell_types" : [
              {
                "name" : "Glutamatergic layer 4",
                "markers" : [
                  {
                     "genes" : ["Rorb+", "Pagr8+"],
                     "weight" : 1.0
                  }
                ]
              }
            ]
        }
      }
    ]
}
```

Inference Algorithm

We have already calculated the up-regulated and down-regulated genes for each cluster in the differential expression analysis step.

First, load gene markers for each cell type from the JSON file specified, and exclude marker genes, along with their associated weights, that are not expressed in the data.

Then scan each cluster to determine its putative cell types. For each cluster and putative cell type, we calculate a score between 0 and 1, which describes how likely cells from the cluster are of this cell type. The higher the score is, the more likely cells are from the cell type.

To calculate the score, each marker is initialized with a maximum impact value (which is 2). Then do case analysis as follows:

- For a positive marker:
 - If it is not up-regulated, its impact value is set to 0.
 - Otherwise, if it is up-regulated:
 - * If it additionally has a fold change in percentage of cells expressing this marker (within cluster vs. out of cluster) no less than 1.5, it has an impact value of 2 and is recorded as a **strong supporting marker**.
 - * If its fold change (fc) is less than 1.5, this marker has an impact value of 1 + (fc 1) / 0.5and is recorded as a **weak supporting marker**.
- For a negative marker:
 - If it is up-regulated, its impact value is set to 0.
 - If it is neither up-regulated nor down-regulated, its impact value is set to 1.
 - Otherwise, if it is down-regulated:
 - * If it additionally has 1 / fc (where fc is its fold change) no less than 1.5, it has an impact value of 2 and is recorded as a **strong supporting marker**.
 - * If 1 / fc is less than 1.5, it has an impact value of 1 + (1 / fc 1) / 0.5 and is recorded as a weak supporting marker.

The score is calculated as the weighted sum of impact values weighted over the sum of weights multiplied by 2 from all expressed markers. If the score is larger than 0.5 and the cell type has cell subtypes, each cell subtype will also be evaluated.

Output annotation file

For each cluster, putative cell types with scores larger than minimum_report_score will be reported in descending order with respect to their scores. The report of each putative cell type contains the following fields:

- name: Cell type name.
- score: Score of cell type.
- average marker percentage: Average percentage of cells expressing marker within the cluster between all positive supporting markers.
- **strong support**: List of strong supporting markers. Each marker is represented by a tuple of its name and percentage of cells expressing it within the cluster.
- weak support: List of week supporting markers. It has the same structure as strong support.

plot

The h5ad file contains a default cell attribute Channel, which records which channel each that single cell comes from. If the input is a CSV format sample sheet, Channel attribute matches the Sample column in the sample sheet. Otherwise, it's specified in channel field of the cluster inputs.

Other cell attributes used in plot must be added via attributes field in the aggregate_matrices inputs.

plot inputs

Name	Description	Example	Default
plot_compos	ition	"louvain_labels:Donor"	None
	 Takes the format of "label:attr,label:attr,,label:attr". If non-empty, generate composition plot for each "label:attr" pair. "label" refers to cluster labels and "attr" refers to sample conditions 		
plot_fitsne	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FIt-SNEs side by side	"louvain_labels,Donor"	None
plot_tsne	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored t-SNEs side by side	"louvain_labels,Channel"	None
plot_umap	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored UMAP side by side	"louvain_labels,Donor"	None
plot_fle	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FLE (force-directed layout embedding) side by side	"louvain_labels,Donor"	None
plot_diffmap	Takes the format of "attr,attr,,attr". If non-empty, generate attr colored 3D interactive plot. The 3 coordinates are the first 3 PCs of all diffusion components	"louvain_labels,Donor"	None
plot_citeseq_	fitsne plot cells based on FIt-SNE coordinates estimated from antibody expressions. Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FIt-SNEs side by side	"louvain_labels,Donor"	None
plot_net_tsno	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored t-SNEs side by side based on net t-SNE result.	"leiden_labels,Channel"	None
plot_net_um	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored UMAP side by side	"leiden_labels,Donor"	None
8	based on net UMAP result.	hapter 10. Version 0.1.0	July 27, 20
plot_net_fle		"leiden_labels,Donor"	None
	Takes the format of "attr,attr,,attr".		

plot outputs

Name	Туре	Description
output_pdfs	Array[File]	Outputted pdf files
output_htmls	Array[File]	Outputted html files

Generate SCP Output

Generate analysis result in Single Cell Portal (SCP) compatible format.

scp_output inputs

Name	Description	Example	Default
generate_scp	_dWtpathser to generate SCP format output or not.	false	false
output_dense	Output dense expression matrix, instead of the default	false	false
	sparse matrix format.		

scp_output outputs

Name	Туре	Description
output_scp_files	Array[File]	Outputted SCP format files.

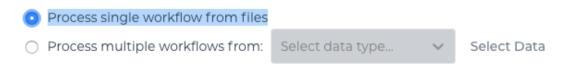
10.8.2 Run CITE-Seq analysis

To run CITE-Seq analysis, turn on cite_seq option in cluster inputs of cumulus workflow.

An embedding of epitope expressions via FIt-SNE is available at basis X_citeseq_fitsne.

To plot this epitope embedding, specify attributes to plot in plot_citeseq_fitsne field of cluster inputs.

10.8.3 Run subcluster analysis


Once we have **cumulus** outputs, we could further analyze a subset of cells by running **cumulus_subcluster**. To run **cumulus_subcluster**, follow the following steps:

1. Import cumulus_subcluster method.

See the Terra documentation for adding a workflow. The cumulus workflow is under Broad Methods Repository with name "cumulus/cumulus_subcluster".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export cumulus workflow in the drop-down menu.

2. In your workspace, open cumulus_subcluster in WORKFLOWS tab. Select Process single workflow from files as below

and click the SAVE button.

cumulus_subcluster steps:

cumulus_subcluster processes the subset of single cells in the following steps:

- 1. **subcluster**. In this step, **cumulus_subcluster** first select the subset of cells from **cumulus** outputs according to user-provided criteria. It then performs batch correction, dimension reduction, diffusion map calculation, graph-based clustering and 2D visualization calculation (e.g. t-SNE/UMAP/FLE).
- 2. de_analysis (optional). In this step, cumulus_subcluster calculates potential markers for each cluster by performing a variety of differential expression (DE) analysis. The available DE tests include Welch's t test, Fisher's exact test, and Mann-Whitney U test. cumulus_subcluster can also calculate the area under ROC curve (AU-ROC) values for putative markers. If the samples are human or mouse immune cells, cumulus_subcluster can optionally annotate putative cell types for each cluster based on known markers.
- 3. **plot** (optional). In this step, **cumulus_subcluster** can generate the following 5 types of figures based on the **subcluster** step results:
 - **composition** plots which are bar plots showing the cell compositions (from different conditions) for each cluster. This type of plots is useful to fast assess library quality and batch effects.
 - tsne, fitsne, and net_tsne: t-SNE like plots based on different algorithms, respectively. Users can specify different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **umap** and **net_umap**: UMAP like plots based on different algorithms, respectively. Users can specify different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - fle and net_fle: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respectively. Users can specify different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **diffmap** plots which are 3D interactive plots showing the diffusion maps. The 3 coordinates are the first 3 PCs of all diffusion components.

cumulus_subcluster's inputs

cumulus_subcluster shares many inputs/outputs with **cumulus**, we will only cover inputs/outputs that are specific to **cumulus_subcluster** in this section.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.

Name	Description	Example	Default	
input_h5ad	Google bucket URL of input h5ad file containing cumu-	"gs://fc-e000000-		
	<i>lus</i> results	0000-0000-0000-		
		000000000000/my_results_	dir/my_results.h	h5a
output_nam	e This is the prefix for all output files. It should contain	"gs://fc-e000000-		
	the Google bucket URL, subdirectory name and output	0000-0000-0000-		
	name prefix	000000000000/my_results_	dir/my_results_	_su
subset_selec	tions	"louvain_labels:3,6"		
		or "lou-		
	Specify which cells will be included in the subcluster analysis.	vain_labels:3,6;Donor:1,2"		
	This field contains one or more <subset_selection> strings separated by ';'.</subset_selection>			
	Each <subset_selection> string takes the format of 'attr:value,,value', which means select cells with attr in the values.</subset_selection>			
	If multiple <subset_selection> strings are specified, the subset of cells selected is the intersection of these strings</subset_selection>			
calculate_pse	uccatimetate diffusion-based pseudotimes based on	"sample_1-	None	
	<roots>. <roots> should be a comma-separated list of</roots></roots>	ACCCGGGTTT-		
	cell barcodes	1,sample_1-		
		TCCCGGGAAA-2"		
num_cpu	Number of cpus per cumulus job	32	64	
memory	Memory size string	"200G"	"200G"	
disk_space	Total disk space in GB	100	100	
preemptible	Number of preemptible tries	2	2	

For other **cumulus_subcluster** inputs, please refer to cumulus cluster inputs list for details. Notice that some inputs (as listed below) in **cumulus cluster** inputs list are DISABLED for **cumulus_subcluster**:

- cite_seq
- cite_seq_capping
- output_filtration_results
- plot_filtration_results
- plot_filtration_figsize
- output_seurat_compatible
- batch_group_by
- min_genes
- max_genes
- min_umis
- max_umis
- mito_prefix
- percent_mito
- gene_percent_cells

- min_genes_on_raw
- counts_per_cell_after

cumulus_subcluster's outputs

Name	Туре	Description
output_h5ad	File	
		h5ad-formatted HDF5 file containing all results (output_name.h5ad). If perform_de_analysis is on, this file should be the same as <i>output_de_h5ad</i> . To load this file in Python, it's similar as in cumulus cluster outputs section. Besides, for subcluster results, there is a new cell attributes in data.obs['pseudo_time'], which records the inferred pseudotime for each cell.
output_log	File	This is a copy of the logging module output, containing important interme- diate messages
output_loom_file	File	Generated loom file (output_name.loom)
output_parquet_fi	leFile	Generated PARQUET file that contains metadata and expression levels for every gene (output_name.parquet)
output_de_h5ad	File	Generated h5ad-formatted results with DE results updated (out- put_name.h5ad)
output_de_xlsx	File	Generated Spreadsheet reporting DE results (output_name.de.xlsx)
output_pdfs	Array[File]	Generated pdf files
output_htmls	Array[File]	Generated html files

10.8.4 Load Cumulus results into Seurat

First, you need to set output_seurat_compatible field to true in cumulus cluster inputs to generate a Seurat-compatible output file output_name.seurat.h5ad, in addition to the normal result output_name.h5ad.

Notice that python, the anndata python library with version at least 0.6.22.post1, and the reticulate R library are required to load the result into Seurat.

Execute the R code below to load the results into Seurat (working with both Seurat v2 and v3):

The resulting Seurat object result has three data slots:

- raw.data records filtered raw count matrix.
- data records filtered and log-normalized expression matrix.
- scale.data records variable-gene-selected, standardized expression matrix that are ready to perform PCA.

10.8.5 Visualize Cumulus results in Python

Ensure you have Pegasus installed.

Download your analysis result data, say output_name.h5ad, from Google bucket to your local machine.

Load the output:

```
import pegasus as pg
adata = pg.read_input("output_name.h5ad")
```

Violin plot of the computed quality measures:

t-SNE plot colored by louvain cluster labels and channel:

```
fig = pg.embedding(adata, basis = 'tsne', keys = ['louvain_labels', 'Channel'])
fig.savefig('output_file.tsne.pdf', dpi = 500)
```

t-SNE plot colored by genes of interest:

```
fig = pg.embedding(adata, basis = 'tsne', keys = ['CD4', 'CD8A'])
fig.savefig('output_file.genes.tsne.pdf', dpi = 500)
```

For other embedding plots using FIt-SNE (fitsne), Net t-SNE (net_tsne), CITE-Seq FIt-SNE (citeseq_fitsne), UMAP (umap), Net UMAP (net_umap), FLE (fle), or Net FLE (net_fle) coordinates, simply substitute its basis name for tsne in the code above.

Composition plot on louvain cluster labels colored by channel:

```
fig = pg.composition_plot(adata, by = 'louvain_labels', condition = 'Channel')
fig.savefig('output_file.composition.pdf', dpi = 500)
```

10.9 Demuxlet

This workflow runs demuxlet to deconvolute sample identity when multiple samples are pooled by barcoded single-cell sequencing.

- 1. Align your single-cell sequencing data (for example using the cellranger or drop_seq workflows).
- 2. Create a sample sheet.

Please note that the columns in the tab separated file must be in the order shown below and does not contain a header line.

Column	Description
Name	Sample name.
BAM	Location of the BAM file in the cloud (gs:// URL).
Barcodes	Location of the valid cellular barcodes file in the cloud (gs:// URL).
VCF	Location of the VCF file to use for this sample in the cloud (gs:// URL).

Example:

3. Upload your sample sheet to the workspace bucket.

Example:

gsutil cp /foo/bar/projects/sample_sheet.tsv gs://fc-e0000000/

4. Import *demuxlet* workflow to your workspace.

See the Terra documentation for adding a workflow. The workflow is under Broad Methods Repository with the name "cumulus/demuxlet".

Next, in the workflow page, click the Export to Workspace... button, and select the workspace you want to export to in the drop-down menu.

5. In your workspace, open demuxlet in WORKFLOWS tab. Select Process single workflow from files as below

Process single workflow from files			
O Process multiple workflows from:	Select data type	~	Select Data

and click the ${\tt Save}$ button.

10.9.1 Inputs

Please see the description of important inputs below.

Column	Description
tsv_file	Four column tab-separated file without a header with name, coordinate sorted bam, barcodes, and vcf
min_MQ	Minimum mapping quality to consider (default 20)
alpha	Grid of alpha to search for (default [0.1, 0.2, 0.3, 0.4, 0.5]).
min_TD	Minimum distance to the tail (default 0)
tag_group	Tag representing readgroup or cell barcodes, in the case to partition the BAM file into multiple groups (default "CB")
tag_UMI	Tag representing UMIs (default "UB"")
field	FORMAT field to extract the genotype, likelihood, or posterior from (default "GT")
geno_error	Offset of genotype error rate (default 0.1)

10.9.2 Outputs

The demuxlet output file contains the best guess of the sample identity, with detailed statistics to reach to the best guess.

10.10 Run Terra pipelines via command line

You can run Terra pipelines via the command line by installing the altocumulus package.

10.10.1 Install altocumulus for Broad users

Request an UGER node:

```
reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive shell using the regevlab project with 4G memory per thread, 8 threads. Feel free to change the memory, thread, and project parameters.

Add conda to your path:

reuse Anaconda3

Activate the alto virtual environment:

source activate /seq/regev_genome_portal/conda_env/cumulus

10.10.2 Install altocumulus for non-Broad users

1. Make sure you have conda installed. If you haven't installed conda, use the following commands to install it on Linux:

```
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh .
bash Miniconda3-latest-Linux-x86_64.sh -p /home/foo/miniconda3
mv Miniconda3-latest-Linux-x86_64.sh /home/foo/miniconda3
```

where /home/foo/miniconda3 should be replaced by your own folder holding Miniconda3.

Or use the following commdands for MacOS installation:

```
curl -0 curl -0 https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash Miniconda3-latest-MacOSX-x86_64.sh -p /Users/foo/miniconda3
mv Miniconda3-latest-MacOSX-x86_64.sh /Users/foo/miniconda3
where ``/Users/foo/miniconda3`` should be replaced by your own folder holding_
→Miniconda3.
```

1. Create a conda environment named "alto" and install altocumulus:

```
conda create -n alto -y pip
source activate alto
git clone https://github.com/klarman-cell-observatory/altocumulus.git
cd altocumulus
pip install -e .
```

When the installation is done, type alto fc_run -h in terminal to see if you can see the help information.

10.10.3 Run Terra workflows via alto fc_run

alto fc_run runs a Terra method. Features:

• Uploads local files/directories in your inputs to a Google Cloud bucket updates the file paths to point to the Google Cloud bucket.

Your sample sheet can point to local file paths. In this case, alto run will take care of uploading directories (e.g. fastq directories) and modifying the sample sheet to point to a Google Cloud bucket.

- Creates or uses an existing workspace.
- Uses the latest version of a method unless the method version is specified.

Options

Required options are in bold.

Name	Description
-m <method> -method <method></method></method>	<pre>Specify a Terra workflow <method> to use. <method> is of format Namespace/Name (e.g. cumulus/cellranger_workflow). A snapshot version number can optionally be specified (e.g. cumulus/cellranger_workflow/4); otherwise the latest snapshot of the method is used.</method></method></pre>
-w <workspace> –workspace <workspace></workspace></workspace>	Specify which Terra workspace < <i>WORKSPACE</i> > to use. < <i>WORKSPACE</i> > is also of format <i>Namespace/Name</i> (e.g. foo/bar). The workspace will be created if it does not exist.
-i <wdl_inputs> -inputs <wdl_inputs></wdl_inputs></wdl_inputs>	Specify the WDL input JSON file to use. It can be a local file, a JSON string, or a Google bucket URL directing to a remote JSON file.
–bucket-folder <folder></folder>	Store inputs to <folder> under workspace's google bucket.</folder>
-o <updated_json> –upload <updated_json></updated_json></updated_json>	Upload files/directories to Google bucket of the workspace, and generate an updated input JSON file (with local paths replaced by Google bucket URLs) to <updated_json> on local machine.</updated_json>

Example

{

}

This example shows how to use alto fc_run to run cellranger_workflow to extract gene-count matrices from sequencing output.

1. Prepare your sample sheet example_sample_sheet.csv as the following:

```
Sample, Reference, Flowcell, Lane, Index, Chemistry
sample_1, GRCh38, /my-local-path/flowcell1, 1-2, SI-GA-A8, threeprime
sample_2, GRCh38, /my-local-path/flowcell1, 3-4, SI-GA-B8, threeprime
sample_3, mm10, /my-local-path/flowcell1, 5-6, SI-GA-C8, fiveprime
sample_1, GRCh38, /my-local-path/flowcell2, 1-2, SI-GA-A8, threeprime
sample_2, GRCh38, /my-local-path/flowcell2, 3-4, SI-GA-B8, threeprime
sample_3, mm10, /my-local-path/flowcell2, 5-6, SI-GA-C8, fiveprime
sample_4, mm10, /my-local-path/flowcell2, 7-8, SI-GA-C8, fiveprime
```

where /my-local-path is the top-level directory of your BCL files on your local machine.

Note that sample_1, sample_2, sample_3, and sample_4 are sequenced on 2 flowcells.

2. Prepare your JSON input file inputs.json for cellranger_workflow:

```
"cellranger_workflow.input_csv_file" : "/my-local-path/sample_sheet.csv",
"cellranger_workflow.output_directory" : "gs://url/outputs",
"cellranger_workflow.delete_input_bcl_directory": true
```

where gs://url/outputs is the folder on Google bucket of your workspace to hold output.

3. Run the following command to kick off your Terra workflow:

where myworkspace_namespace/myworkspace_name should be replaced by your workspace namespace and name.

Upon success, alto fc_run returns a URL pointing to the submitted Terra job for you to monitor.

If for any reason, your job failed. You could rerun it without uploading files again via the following command:

because inputs_updated.json is the updated version of inputs.json with all local paths being replaced by their corresponding Google bucket URLs after uploading.

10.11 Examples

10.11.1 Example of Cell-Hashing and CITE-Seq Analysis on Cloud

In this example, you'll learn how to perform Cell-Hashing and CITE-Seq analysis using cumulus on Terra.

0. Workspace and Data Preparation

After registering on Terra and creating a workspace there, you'll need the following two information:

- Terra workspace name. This is shown on your Terra workspace webpage, with format "<*workspace-namespace>/<workspace-name>*". Let it be ws-lab/ws-01 in this example, which means that your workspace has namespace ws-lab and name ws-01.
- The corresponding Google Cloud Bucket location of your workspace. You can check it by clicking the link under "Google Bucket" title on your Terra workspace webpage. Let it be gs:// fc-e0000000-0000-0000-000000000000 in this example.

Then upload your BCL directories to Google bucket of your workspace using gsutil:

```
gsutil -m cp -r /my-local-path/BCL/* gs://fc-e0000000-0000-0000-0000-0000000000/

→data-source
```

where /my-local-path/BCL is the path to the top-level directory of your BCL files on your local machine, and data-source is the folder on Google bucket to hold the uploaded data.

1. Extract Gene-Count Matrices

First step is to extract gene-count matrices from sequencing output.

You need two original files from your dataset to start:

• Cell-Hashing Index CSV file, say its filename is cell_hashing_index.csv, of format *feature_barcode,feature_name*. See an example below:

```
AATCATCACAAGAAA,CB1
GGTCACTGTTACGTA,CB2
```

where each line is a pair of feature barcode and feature name of a sample.

• CITE-Seq Index CSV file, say its filename is cite_seq_index.csv, of the same format as above. See an example below:

```
TTACATGCATTACGA, CD19
GCATTAGCATGCAGC, HLA-ABC
```

where each line is a pair of Barcode and Specificity of an Antibody.

Then upload them to your Google Bucket using gsutil. Assuming both files are in folder /Users/foo/ data-source on your local machine, type the following command to upload:

```
gsutil -m cp -r /Users/foo/data-source gs://fc-e0000000-0000-0000-00000000000/
```

Next, create a sample sheet, cellranger_sample_sheet.csv, on your local machine with content below:

For the details on how to prepare this sample sheet, please refer to Step 3 of Cell Ranger sample sheet instruction.

When you are done with the sample sheet, upload it to Google bucket:

Now we are ready to set up **cellranger_workflow** workflow for this phase. If your workspace doesn't have this workflow, import it to your workspace by following Step 5 and 6 of cellranger_workflow documentation.

Then prepare a JSON file, cellranger_inputs.json, which is used to set up the workflow inputs:

```
{
    "cellranger_workflow.input_csv_file" : "gs://fc-e0000000-0000-0000-
    0000000000/my-dir/cellranger_sample_sheet.csv",
        "cellranger_workflow.output_directory" : "gs://fc-e0000000-0000-0000-
    0000000000/my-dir"
}
```

where gs://fc-e0000000-0000-0000-000000000000/my-dir is the remote directory in which the output of cellranger_workflow will be generated. For the details on the options above, please refer to Cell Ranger workflow inputs.

When you are done with the JSON file, on cellranger_workflow workflow page, upload cellranger_inputs. json by clicking upload json link as below:

Then Click SAVE button to save the inputs, and click RUN ANALYSIS button as below to start the job:

When the execution is done, all the output results will be in folder gs://fc-e0000000-0000-0000-00000000000/my-dir.

You'll need 4 files for the next phases. 3 are from the output:

- RNA count matrix of the sample group of interest: gs://fc-e0000000-0000-0000-0000-0000/ my-dir/sample_cc/raw_feature_bc_matrix.h5;
- Cell-Hashing Antibody count matrix: gs://fc-e0000000-0000-0000-0000-000000000/ my-dir/sample_cell_hashing/sample_cell_hashing.csv;

• CITE-Seq Antibody count matrix: gs://fc-e0000000-0000-0000-00000000000/ my-dir/sample_cite_seq/sample_cite_seq.csv.

Besides, create a sample sheet, citeseq_antibody_control.csv, with content as the following example:

```
Antibody,Control
CD3-0034,Mouse_IgG1
CD4-0045,Mouse_IgG1
```

where each line is a pair of Antibody name and the Control group name to which it is assigned. You should be able to get this information from your experiment setting or the original dataset.

Copy or upload them to gs://fc-e0000000-0000-0000-00000000000/my-dir.

2. Demultiplex Cell-Hashing Data

1. Prepare a sample sheet, cell_hashing_sample_sheet.csv, with the following content:

```
OUTNAME,RNA,ADT,TYPE
exp,gs://fc-e0000000-0000-0000-000000000000/my-dir/raw_feature_bc_matrix.h5,

→gs://fc-e0000000-0000-0000-00000000000/my-dir/sample_cell_hashing.csv,

→cell-hashing
```

where **OUTNAME** specifies the subfolder and file names of output, which is free to change, **RNA** and **ADT** columns specify the RNA and ADT meta-data of samples, and **TYPE** is cell-hashing for this phase.

Then upload it to Google bucket:

```
gsutil cp cell_hashing_sample_sheet.csv gs://fc-e0000000-0000-0000-

$\dots$0000000000/my-dir/
```

- 2. If your workspace doesn't have **cumulus_hashing_cite_seq** workflow, import it to your workspace by following Step 5 and 6 of cumulus_hashing_cite_seq documentation.
- 3. Prepare an input JSON file, cell_hashing_inputs.json with the following content to set up cumulus_hashing_cite_seq workflow inputs:

```
"cumulus_hashing_cite_seq.input_sample_sheet" : "gs://fc-e0000000-0000-

↔0000-00000000000/my-dir/cell_hashing_sample_sheet.csv",

    "cumulus_hashing_cite_seq.output_directory" : "gs://fc-e0000000-0000-0000-

↔0000-0000000000/my-dir/",

    "cumulus_hashing_cite_seq.demuxEM_min_num_genes" : 500,

    "cumulus_hashing_cite_seq.demuxEM_generate_diagnostic_plots" : true

}
```

For the details on these options, please refer to cell-hashing/nuclei-hashing inputs.

4. On the page of cumulus_hashing_cite_seq workflow, upload cell_hashing_inputs.json by clicking upload json link. Save the inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you'll get a processed file, exp_demux.h5sc, stored on cloud gs://fc-e0000000-0000-0000-0000000000/my-dir/exp/.

{

3. Merge RNA and ADT Matrices for CITE-Seq Data

1. Prepare a sample sheet, cite_seq_sample_sheet.csv, with the following content:

```
OUTNAME,RNA,ADT,TYPE
exp_raw,gs://fc-e0000000-0000-0000-00000000000000/my-dir/exp/exp_demux.h5sc,

→gs://fc-e0000000-0000-0000-00000000000/my-dir/sample_cite_seq.csv,cite-seq
```

The structure of sample sheet here is the same as Phase 2. The difference is that you are now using the demultiplexed output h5sc file from Phase 2 as **RNA** here, and the sample **TYPE** is now cite-seq.

Then upload it to Google bucket:

2. Prepare an input JSON file, cite_seq_inputs.json, in the same directory as above, with the following content:

```
{
    "cumulus_hashing_cite_seq.input_sample_sheet" : "gs://fc-e0000000-000-
    0000-0000-00000000/my-dir/cite_seq_sample_sheet.csv",
        "cumulus_hashing_cite_seq.output_directory" : "gs://fc-e0000000-0000-
    0000-000000000/my-dir/",
        "cumulus_hashing_cite_seq.antibody_control_csv" : "gs://fc-e0000000-0000-
    0000-0000-00000000/my-dir/citeseq_antibody_control.csv"
}
```

For the details on these options, please refer to cell-hashing/nuclei-hashing inputs.

3. On **cumulus_hashing_cite_seq** workflow page, clear all previous inputs, and then upload cite_seq_inputs.json by clicking upload json link. Save the new inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you'll get a merged raw matrices file, exp_raw.h5sc, stored on cloud gs:// fc-e0000000-0000-0000-0000-000000000/my-dir/exp_raw.

4. Data Analysis

1. Prepare a sample sheet, cumulus_count_matrix.csv, with the following content:

```
Sample,Location
exp,gs://fc-e0000000-0000-0000-000000000000/my-dir/exp_raw/exp_raw.h5sc
```

This sample sheet describes the metadata for each 10x channel (as one row in the sheet). **Sample** specifies the name for each channel, which can be renamed; **Location** specifies the file location, which is the output of Phase 3.

Then upload it to Google bucket:

Alternative, if you have only one count matrix for analysis, which is the case here, you can skip this step. See this manual for input file formats that cumulus currently supports.

- 2. If your workspace doesn't have **cumulus** workflow, import it to your workspace by following Step 2 and 3 of cumulus documentation.
- 3. Prepare a JSON file, cumulus_inputs.json with the following content to set up cumulus workflow inputs:

```
{
        "cumulus.input file" : "gs://fc-e0000000-0000-0000-000000000000/my-
⇔dir/cumulus count matrix.csv".
        "cumulus.output_name" : "gs://fc-e0000000-0000-0000-000000000000/my-
→dir/results/exp_merged_out",
       "cumulus.num_cpu" : 8,
       "cumulus.select_only_singlets" : true,
       "cumulus.cite_seq" : true,
        "cumulus.run_louvain" : true,
       "cumulus.find_markers_lightgbm" : true,
       "cumulus.remove_ribo" : true,
       "cumulus.mwu" : true,
       "cumulus.annotate_cluster" : true,
       "cumulus.plot_fitsne" : "louvain_labels,assignment",
       "cumulus.plot citeseg fitsne" : "louvain labels, assignment",
       "cumulus.plot_composition" : "louvain_labels:assignment"
}
```

Alternatively, if you have only one count matrix for analysis and has skipped Step 1, directly set its location in cumulus.input_file parameter above. For this example, it is:

All the rest parameters remain the same.

Notice that for some file formats, cumulus.genome is required.

A typical cumulus pipeline consists of 4 steps, which is given here. For the details of options above, please refer to cumulus inputs.

4. On the page of cumulus workflow, upload cumulus_inputs.json by clicking upload json link. Save the inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you'll get the following results stored on cloud gs://fc-e0000000-0000-0000-0000000000/my-dir/results/to check:

- exp_merged_out.h5sc: The aggregated count matrix data. This file doesn't exist if your cumulus. input_file parameter is not a sample sheet.
- exp_merged_out.h5ad: The processed RNA matrix data.
- exp_merged_out.filt.xlsx: The Quality-Control (QC) summary of the raw data.
- exp_merged_out.filt.{UMI, gene, mito}.pdf: The QC plots of the raw data.
- exp_merged_out.de.xlsx: Differential Expression analysis result.
- exp_merged_out.markers.xlsx: Result on cluster-specific markers predicted by gradient boosting machine.
- exp_merged_out.anno.txt: Cell type annotation output.
- exp_merged_out.fitsne.pdf: FIt-SNE plot.

- exp_merged_out.citeseq.fitsne.pdf: CITE-Seq FIt-SNE plot.
- exp_merged_out.louvain_labels.assignment.composition.pdf: Composition plot.

You can directly go to your Google Bucket to view or download these results.

(optional) Run Terra Workflows in Command Line

For Phase 1, 2, and 3, besides uploading sample sheets and setting-up workflow inputs on workflow pages, you can also start the workflow execution via command line using **altocumulus** tool.

First, install altocumulus by following altocumulus installation instruction.

1. For Phase 1 above, when you are done with creating a sample sheet cellranger_sample_sheet.csv on your local machine, in the same directory, prepare JSON file cellranger_inputs.json as below:

```
"cellranger_workflow.input_csv_file" : "cellranger_sample_sheet.csv",
...
```

where all the rest parameters remain the same as in Phase 1. Import **cellranger_workflow** workflow to your workspace as usual.

Now run the following command in the same directory on your local machine:

```
alto fc_run -m cumulus/cellranger_workflow -w ws-lab/ws-01 --bucket-folder my-dir_

→-i cellranger_input.json -o cellranger_input_updated.json
```

Notice that if the execution failed, you could rerun the execution by setting cellranger_input_updated. json for -i option to use the sample sheet already uploaded to Google bucket. Similarly below.

2. For Phase 2 above, similarly, in the same directory of your cell_hashing_sample_sheet.csv file, prepare JSON file cell_hashing_inputs.json as below:

where all the rest parameters remain the same as in Phase 2. Import **cumulus_hashing_cite_seq** workflow to your workspace as usual.

Run the following command in the same directory on your local machine:

3. For Phase 3 above, similarly, in the same directory of your cite_seq_sample_sheet.csv file, prepare JSON file cite_seq_inputs.json as below:

```
{
    "cumulus_hashing_cite_seq.input_sample_sheet" : "cite_seq_sample_sheet.csv
    ",
    .....
}
```

{

}

ł

{

}

where all the rest parameters remain the same as in Phase 3.

Run the following command in the same directory on your local machine:

```
alto fc_run -m cumulus/cumulus_hashing_cite_seq -w ws-lab/ws-01 --bucket-folder_

→my-dir -i cite_seq_inputs.json -o cite_seq_inputs_updated.json
```

4. For Phase 4 above, similarly, in the same directory of your cumulus_count_matrix.csv file, prepare JSON file cumulus_inputs.json as below:

```
"cumulus.input_file" : "cumulus_count_matrix.csv",
... ...
```

where all the rest parameters remain the same as in Phase 4.

Alternatively, if your input is not a sample sheet, simply set your cumulus_inputs.json as:

where all the rest parameters remain the same.

Run the following command in the same directory of your cumulus_inputs.json file:

```
alto fc_run -m cumulus/cumulus -w ws-lab/ws-01 --bucket-folder my-dir/results -i_
→cumulus_inputs.json -o cumulus_inputs_updated.json
```

Examples using Terra to perform single-cell sequencing analysis are provided here. Please click the topics on the left panel under title **"Examples"** to explore.

10.12 Contribution

10.13 Contact us

If you have any questions related to Cumulus, please feel free to contact us via Cumulus Support Google Group.