
Cumulus Documentation

Bo Li, Joshua Gould, and et al.

May 12, 2020

Contents

1 Version 0.15.0 May 6, 2020 3

2 Version 0.14.0 February 28, 2020 5

3 Version 0.13.0 February 7, 2020 7

4 Version 0.12.0 December 14, 2019 9

5 Version 0.11.0 December 4, 2019 11

6 Version 0.10.0 October 2, 2019 13

7 Version 0.7.0 Feburary 14, 2019 15

8 Version 0.6.0 January 31, 2019 17

9 Version 0.5.0 November 18, 2018 19

10 Version 0.4.0 October 26, 2018 21

11 Version 0.3.0 October 24, 2018 23

12 Version 0.2.0 October 19, 2018 25

13 Version 0.1.0 July 27, 2018 27

i

ii

Cumulus Documentation

All of our docker images are publicly available on Docker Hub and Quay. Our workflows use Docker Hub as the de-
fault Docker registry. Users can use Quay as the Docker registry by entering quay.io/cumulus/ for the workflow
input “docker_registry”, or enter a custom registry URL of their own choice.

Contents 1

https://cloud.docker.com/u/cumulusprod/
https://quay.io/organization/cumulus

Cumulus Documentation

2 Contents

CHAPTER 1

Version 0.15.0 May 6, 2020

• Update all workflows to OpenWDL version 1.0.

• Cumulus now supports multi-job execution from Terra data table input.

• Cumulus generates Cirrocumulus input in .cirro folder, instead of a huge .parquet file.

3

Cumulus Documentation

4 Chapter 1. Version 0.15.0 May 6, 2020

CHAPTER 2

Version 0.14.0 February 28, 2020

• Added support for gene-count matrices generation using alternative tools (STARsolo, Optimus, Salmon alevin,
Kallisto BUStools).

• Cumulus can process demultiplexed data with remapped singlets names and subset of singlets.

• Update VDJ related inputs in Cellranger workflow.

• SMART-Seq2 and Count workflows are in OpenWDL version 1.0.

5

Cumulus Documentation

6 Chapter 2. Version 0.14.0 February 28, 2020

CHAPTER 3

Version 0.13.0 February 7, 2020

• Added support for aggregating scATAC-seq samples.

• Cumulus now accepts mtx format input.

7

Cumulus Documentation

8 Chapter 3. Version 0.13.0 February 7, 2020

CHAPTER 4

Version 0.12.0 December 14, 2019

• Added support for building references for sc/snRNA-seq, scATAC-seq, single-cell immune profiling, and
SMART-Seq2 data.

9

Cumulus Documentation

10 Chapter 4. Version 0.12.0 December 14, 2019

CHAPTER 5

Version 0.11.0 December 4, 2019

• Reorganized Cumulus documentation.

11

Cumulus Documentation

12 Chapter 5. Version 0.11.0 December 4, 2019

CHAPTER 6

Version 0.10.0 October 2, 2019

• scCloud is renamed to Cumulus.

• Cumulus can accept either a sample sheet or a single file.

13

Cumulus Documentation

14 Chapter 6. Version 0.10.0 October 2, 2019

CHAPTER 7

Version 0.7.0 Feburary 14, 2019

• Added support for 10x genomics scATAC assays.

• scCloud runs FIt-SNE as default.

15

Cumulus Documentation

16 Chapter 7. Version 0.7.0 Feburary 14, 2019

CHAPTER 8

Version 0.6.0 January 31, 2019

• Added support for 10x genomics V3 chemistry.

• Added support for extracting feature matrix for Perturb-Seq data.

• Added R script to convert output_name.seurat.h5ad to Seurat object. Now the raw.data slot stores filtered raw
counts.

• Added min_umis and max_umis to filter cells based on UMI counts.

• Added QC plots and improved filtration spreadsheet.

• Added support for plotting UMAP and FLE.

• Now users can upload their JSON file to annotate cell types.

• Improved documentation.

• Added lightGBM based marker detection.

17

Cumulus Documentation

18 Chapter 8. Version 0.6.0 January 31, 2019

CHAPTER 9

Version 0.5.0 November 18, 2018

• Added support for plated-based SMART-Seq2 scRNA-Seq data.

19

Cumulus Documentation

20 Chapter 9. Version 0.5.0 November 18, 2018

CHAPTER 10

Version 0.4.0 October 26, 2018

• Added CITE-Seq module for analyzing CITE-Seq data.

21

Cumulus Documentation

22 Chapter 10. Version 0.4.0 October 26, 2018

CHAPTER 11

Version 0.3.0 October 24, 2018

• Added the demuxEM module for demultiplexing cell-hashing/nuclei-hashing data.

23

Cumulus Documentation

24 Chapter 11. Version 0.3.0 October 24, 2018

CHAPTER 12

Version 0.2.0 October 19, 2018

• Added support for V(D)J and CITE-Seq/cell-hashing/nuclei-hashing.

25

Cumulus Documentation

26 Chapter 12. Version 0.2.0 October 19, 2018

CHAPTER 13

Version 0.1.0 July 27, 2018

• KCO tools released!

13.1 First Time Running

13.1.1 Authenticate with Google

If you’ve done this before you can skip this step - you only need to do this once.

1. Ensure the Google Cloud SDK is installed on your computer.

Note: Broad users do not have to install this-they can type:

reuse Google-Cloud-SDK

to make the Google Cloud tools available.

2. Execute the following command to login to Google Cloud.:

gcloud auth login

3. Copy and paste the link in your unix terminal into your web browser.

4. Enter authorization code in unix terminal.

13.1.2 Create a Terra workspace

1. Create a new Terra workspace by clicking Create New Workspace in Terra

For more detailed instructions please see this document.

27

https://cloud.google.com/sdk/install
https://app.terra.bio/
https://support.terra.bio/hc/en-us/articles/360022716811-The-Workspace-Organize-Data-Organize-and-Run-Analysis-Tools

Cumulus Documentation

13.2 Latest and stable versions on Terra

Cumulus is a fast growing project. As a result, we frequently update WDL snapshot versions on Terra. See below for
latest and stable WDL versions you can use.

13.2.1 Latest version

WDL Snapshot Function
cumulus/cellranger_workflow 10 Run Cell Ranger tools, which include extracting sequence reads us-

ing cellranger mkfastq or cellranger-atac mkfastq, generate count
matrix using cellranger count or cellranger-atac count, run cell-
ranger vdj or feature-barcode extraction

cumulus/count 13 Run alternative tools (STARsolo, Optimus, Salmon alevin, or
Kallisto BUStools) to generate gene-count matrices from FASTQ
files.

cumulus/cellranger_create_reference7 Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr 2 Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_reference2 Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference2 Run Cell Ranger tools to build single-cell immune profiling refer-

ences.
cumulus/smartseq2 7 Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-

ces for SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_reference8 Generate user-customized genome references for SMART-Seq2

data.
cumulus/cumulus 23 Run cumulus analysis module for variable gene selection, batch cor-

rection, PCA, diffusion map, clustering, visualization, differential
expression analysis, cell type annotation, etc.

cumulus/cumulus_subcluster 16 Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq10 Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

28 Chapter 13. Version 0.1.0 July 27, 2018

https://app.terra.bio
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/10
https://portal.firecloud.org/?return=terra#methods/cumulus/count/13
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/7
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/2
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/2
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/2
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/23
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/16
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/10

Cumulus Documentation

13.2.2 Stable version - v0.15.0

WDL Snapshot Function
cumulus/cellranger_workflow 10 Run Cell Ranger tools, which include extracting sequence reads us-

ing cellranger mkfastq or cellranger-atac mkfastq, generate count
matrix using cellranger count or cellranger-atac count, run cell-
ranger vdj or feature-barcode extraction

cumulus/count 13 Run alternative tools (STARsolo, Optimus, Salmon alevin, or
Kallisto BUStools) to generate gene-count matrices from FASTQ
files.

cumulus/cellranger_create_reference7 Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr 2 Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_reference2 Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference2 Run Cell Ranger tools to build single-cell immune profiling refer-

ences.
cumulus/smartseq2 7 Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-

ces for SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_reference8 Generate user-customized genome references for SMART-Seq2

data.
cumulus/cumulus 23 Run cumulus analysis module for variable gene selection, batch cor-

rection, PCA, diffusion map, clustering, visualization, differential
expression analysis, cell type annotation, etc.

cumulus/cumulus_subcluster 16 Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq10 Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

13.2.3 Stable version - v0.14.0

WDL Snapshot Function
cumulus/cellranger_workflow 8 Run Cell Ranger tools, which include extracting sequence reads us-

ing cellranger mkfastq or cellranger-atac mkfastq, generate count
matrix using cellranger count or cellranger-atac count, run cell-
ranger vdj or feature-barcode extraction

cumulus/count 11 Run alternative tools (STARsolo, Optimus, Salmon alevin, or
Kallisto BUStools) to generate gene-count matrices from FASTQ
files.

cumulus/cellranger_create_reference6 Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr 1 Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_reference1 Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference1 Run Cell Ranger tools to build single-cell immune profiling refer-

ences.
cumulus/smartseq2 7 Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-

ces for SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_reference8 Generate user-customized genome references for SMART-Seq2

data.
cumulus/cumulus 16 Run cumulus analysis module for variable gene selection, batch cor-

rection, PCA, diffusion map, clustering, visualization, differential
expression analysis, cell type annotation, etc.

cumulus/cumulus_subcluster 10 Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq8 Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

13.2. Latest and stable versions on Terra 29

https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/10
https://portal.firecloud.org/?return=terra#methods/cumulus/count/13
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/7
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/2
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/2
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/2
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/23
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/16
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/10
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/8
https://portal.firecloud.org/?return=terra#methods/cumulus/count/11
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/6
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/1
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/16
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/10
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/8

Cumulus Documentation

13.2.4 Stable version - v0.13.0

WDL Snapshot Function
cumulus/cellranger_workflow 7 Run Cell Ranger tools, which include extracting sequence reads us-

ing cellranger mkfastq or cellranger-atac mkfastq, generate count
matrix using cellranger count or cellranger-atac count, run cell-
ranger vdj or feature-barcode extraction

cumulus/cellranger_create_reference1 Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr 1 Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_reference1 Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference1 Run Cell Ranger tools to build single-cell immune profiling refer-

ences.
cumulus/smartseq2 5 Run Bowtie2 and RSEM to generate gene-count matrices for

SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_reference4 Generate user-customized genome references for SMART-Seq2

data.
cumulus/cumulus 14 Run cumulus analysis module for variable gene selection, batch cor-

rection, PCA, diffusion map, clustering, visualization, differential
expression analysis, cell type annotation, etc.

cumulus/cumulus_subcluster 9 Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq7 Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

13.2.5 Stable version - v0.12.0

WDL Snapshot Function
cumulus/cellranger_workflow 6 Run Cell Ranger tools, which include extracting sequence reads us-

ing cellranger mkfastq or cellranger-atac mkfastq, generate count
matrix using cellranger count or cellranger-atac count, run cell-
ranger vdj or feature-barcode extraction

cumulus/cellranger_create_reference1 Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_create_reference1 Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference1 Run Cell Ranger tools to build single-cell immune profiling refer-

ences.
cumulus/smartseq2 5 Run Bowtie2 and RSEM to generate gene-count matrices for

SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_reference4 Generate user-customized genome references for SMART-Seq2

workflow.
cumulus/cumulus 11 Run cumulus analysis module for variable gene selection, batch cor-

rection, PCA, diffusion map, clustering, visualization, differential
expression analysis, cell type annotation, etc.

cumulus/cumulus_subcluster 8 Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq6 Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

30 Chapter 13. Version 0.1.0 July 27, 2018

https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/7
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/1
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/5
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/4
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/14
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/9
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/7
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/6
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/1
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/5
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/4
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/11
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/8
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/6

Cumulus Documentation

13.2.6 Stable version - v0.11.0

WDL Snapshot Function
cumulus/cellranger_workflow 4 Run Cell Ranger tools, which include extracting sequence reads us-

ing cellranger mkfastq or cellranger-atac mkfastq, generate count
matrix using cellranger count or cellranger-atac count, run cell-
ranger vdj or feature-barcode extraction

cumulus/smartseq2 3 Run Bowtie2 and RSEM to generate gene-count matrices for
SMART-Seq2 data from FASTQ files

cumulus/cumulus 8 Run cumulus analysis module for variable gene selection, batch cor-
rection, PCA, diffusion map, clustering, visualization, differential
expression analysis, cell type annotation, etc.

cumulus/cumulus_subcluster 5 Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq5 Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

13.2.7 Stable version - v0.10.0

WDL Snapshot Function
cumulus/cellranger_workflow 3 Run Cell Ranger tools, which include extracting sequence reads us-

ing cellranger mkfastq or cellranger-atac mkfastq, generate count
matrix using cellranger count or cellranger-atac count, run cell-
ranger vdj or feature-barcode extraction

cumulus/smartseq2 3 Run Bowtie2 and RSEM to generate gene-count matrices for
SMART-Seq2 data from FASTQ files

cumulus/cumulus 7 Run cumulus analysis module for variable gene selection, batch cor-
rection, PCA, diffusion map, clustering, visualization, differential
expression analysis, cell type annotation, etc.

cumulus/cumulus_subcluster 4 Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq4 Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

13.2.8 Stable version - HTAPP v2

WDL Snapshot Function
regev/cellranger_mkfastq_count 45 Run Cell Ranger to extract FASTQ files and generate gene-count

matrices for 10x genomics data
scCloud/smartseq2 5 Run Bowtie2 and RSEM to generate gene-count matrices for

SMART-Seq2 data from FASTQ files
scCloud/scCloud 14 Run scCloud analysis module for variable gene selection, batch cor-

rection, PCA, diffusion map, clustering and more
scCloud/scCloud_subcluster 9 Run subcluster analysis using scCloud
scCloud/scCloud_hashing_cite_seq9 Run scCloud for cell-hashing/nucleus-hashing/CITE-Seq analysis

13.2. Latest and stable versions on Terra 31

https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/4
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/3
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/8
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/5
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/5
https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/3
https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/3
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/7
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/4
https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/4
https://portal.firecloud.org/?return=terra#methods/scCloud/smartseq2/5
https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud/14
https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud_subcluster/9
https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud_hashing_cite_seq/9

Cumulus Documentation

13.2.9 Stable version - HTAPP v1

WDL Snapshot Function
regev/cellranger_mkfastq_count 39 Run Cell Ranger to extract FASTQ files and generate gene-count

matrices for 10x genomics data
scCloud/scCloud 3 Run scCloud analysis module for variable gene selection, batch cor-

rection, PCA, diffusion map, clustering and more

13.3 Run Cell Ranger tools using cellranger_workflow

cellranger_workflow wraps Cell Ranger to process single-cell/nucleus RNA-seq, single-cell ATAC-seq and
single-cell immune profiling data, and supports feature barcoding (cell/nucleus hashing, CITE-seq, Perturb-seq). It
also provide routines to build cellranger references.

13.3.1 A general step-by-step instruction

1. Import cellranger_workflow

Import cellranger_workflow workflow to your workspace.

See the Terra documentation for adding a workflow. The cellranger_workflow workflow is under Broad
Methods Repository with name “cumulus/cellranger_workflow”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export cellranger_workflow workflow in the drop-down menu.

2. Upload sequencing data to Google bucket

Copy your sequencing output to your workspace bucket using gsutil (you already have it if you’ve installed
Google cloud SDK) in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information
panel.

32 Chapter 13. Version 0.1.0 July 27, 2018

https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud/3
https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository
https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For
example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a
Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-0000-
→˓0000-000000000000/VK18WBC6Z4

-m means copy in parallel, -r means copy the directory recursively, and gs://
fc-e0000000-0000-0000-0000-000000000000 should be replaced by your own workspace
Google bucket URL.

Note 1: If input is a folder of BCL files, users do not need to upload the whole folder to the Google
bucket. Instead, they only need to upload the following files:

RunInfo.xml
RTAComplete.txt
runParameters.xml
Data/Intensities/s.locs
Data/Intensities/BaseCalls

If data are generated using MiSeq or NextSeq, the location files are inside lane subfloders
L001 under Data/Intensities/. In addition, if users’ data only come from a subset
of lanes (e.g. L001 and L002), users only need to upload lane subfolders from the sub-
set (e.g. Data/Intensities/BaseCalls/L001, Data/Intensities/BaseCalls/L002
and Data/Intensities/L001, Data/Intensities/L002 if sequencer is MiSeq or NextSeq).

13.3. Run Cell Ranger tools using cellranger_workflow 33

Cumulus Documentation

Users can submit jobs through command line interface (CLI) using altocumulus, which will smartly
upload BCL folders according to the above rules.

Note 2: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to
change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil available by running:

reuse Google-Cloud-SDK

3. Prepare a sample sheet

3.1 Sample sheet format:

Please note that the columns in the CSV can be in any order, but that the column names must match the
recognized headings.

The sample sheet describes how to demultiplex flowcells and generate channel-specific count matrices.
Note that Sample, Lane, and Index columns are defined exactly the same as in 10x’s simple CSV layout
file.

A brief description of the sample sheet format is listed below (required column headers are shown in
bold).

34 Chapter 13. Version 0.1.0 July 27, 2018

https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

Column Description
Sample Contains sample names. Each 10x channel should have a unique sample name.
Reference

Provides the reference genome used by Cell Ranger for each 10x channel.
The elements in the reference column can be either Google bucket URLs to reference
tarballs or keywords such as GRCh38_v3.0.0.
A full list of available keywords is included in each of the following data type sections
(e.g. sc/snRNA-seq) below.

Flowcell

Indicates the Google bucket URLs of uploaded BCL folders.
If starts with FASTQ files, this should be Google bucekt URLs of uploaded FASTQ
folders.
The FASTQ folders should contain one subfolder for each sample in the flowcell with
the sample name as the subfolder name.
Each subfolder contains FASTQ files for that sample.

Lane

Tells which lanes the sample was pooled into.
Can be either single lane (e.g. 8) or a range (e.g. 7-8) or all (e.g. *).

Index Sample index (e.g. SI-GA-A12).
Chemistry Describes the 10x chemistry used for the sample. This column is optional.
DataType

Describes the data type of the sample — rna, vdj, adt, or crispr.
rna refers to gene expression data (cellranger count),
vdj refers to V(D)J data (cellranger vdj),
adt refers to antibody tag data, which can be either CITE-Seq, cell-hashing, or
nucleus-hashing,
crispr refers to Perturb-seq guide tag data,
atac refers to scATAC-Seq data (cellranger-atac count).
This column is optional and the default data type is rna.

FeatureBarcodeFile

Google bucket urls pointing to feature barcode files for adt and crispr data.
Features can be either antibody for CITE-Seq, cell-hashing, nucleus-hashing or gRNA
for Perburb-seq.
This column is optional provided no adt or crispr data are in the sample sheet.

The sample sheet supports sequencing the same 10x channels across multiple flowcells. If a sample is
sequenced across multiple flowcells, simply list it in multiple rows, with one flowcell per row. In the
following example, we have 4 samples sequenced in two flowcells.

Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType,FeatureBarcodeFile
sample_1,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK18WBC6Z4,1-2,SI-GA-A8,threeprime,rna (continues on next page)

13.3. Run Cell Ranger tools using cellranger_workflow 35

Cumulus Documentation

(continued from previous page)

sample_2,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK18WBC6Z4,3-4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,
→˓5-6,SI-GA-C8,fiveprime,rna
sample_4,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,
→˓7-8,SI-GA-D8,fiveprime,rna
sample_1,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK10WBC9Z2,1-2,SI-GA-A8,threeprime,rna
sample_2,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK10WBC9Z2,3-4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,
→˓5-6,SI-GA-C8,fiveprime,rna
sample_4,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,
→˓7-8,SI-GA-D8,fiveprime,rna

3.2 Upload your sample sheet to the workspace bucket:

Example:

gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-
→˓0000-0000-000000000000/

4. Launch analysis

In your workspace, open cellranger_workflow in WORKFLOWS tab. Select the desired snapshot
version (e.g. latest). Select Run workflow with inputs defined by file paths as be-
low

and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values
in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag
or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.

5. Notice: run cellranger mkfastq if you are non Broad Institute users

Non Broad Institute users that wish to run cellranger mkfastq must create a custom docker image
that contains bcl2fastq.

See bcl2fastq instructions.

6. Do not run cellranger mkfastq

Sometimes, users might want to perform demultiplexing locally and only run the count part on the cloud. This section
describes how to only run the count part via cellranger_workflow.

1. Copy your FASTQ files to the workspace using gsutil in your unix terminal.

36 Chapter 13. Version 0.1.0 July 27, 2018

https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

You should upload folders of FASTQ files. The uploaded folder (for one flowcell) should contain
one subfolder for each sample belong to the this flowcell. In addition, the subfolder name should be
the sample name. Each subfolder contains FASTQ files for that sample.

Example:

gsutil -m cp -r /foo/bar/fastq_path/K18WBC6Z4 gs://fc-e0000000-0000-0000-
→˓0000-000000000000/K18WBC6Z4_fastq

2. Create a sample sheet.

Flowcell column should list Google bucket URLs of the FASTQ folders for flowcells.

Example:

Sample,Reference,Flowcell
sample_1,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓K18WBC6Z4_fastq

3. Set optional input run_mkfastq to false.

13.3.2 Single-cell and single-nucleus RNA-seq

To process sc/snRNA-seq data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scRNA-seq references are summarized below.

Keyword Description
GRCh38_v3.0.0 Human GRCh38, cellranger reference 3.0.0, Ensembl v93 gene annotation
hg19_v3.0.0 Human hg19, cellranger reference 3.0.0, Ensembl v87 gene annotation
mm10_v3.0.0 Mouse mm10, cellranger reference 3.0.0, Ensembl v93 gene annotation
GRCh38_and_mm10_v3.1.0Human (GRCh38) and mouse (mm10), cellranger references 3.1.0, Ensembl

v93 gene annotations for both human and mouse
GRCh38_v1.2.0
or GRCh38

Human GRCh38, cellranger reference 1.2.0, Ensembl v84 gene annotation

hg19_v1.2.0 or
hg19

Human hg19, cellranger reference 1.2.0, Ensembl v82 gene annotation

mm10_v1.2.0 or
mm10

Mouse mm10, cellranger reference 1.2.0, Ensembl v84 gene annotation

GRCh38_and_mm10_v1.2.0
or
GRCh38_and_mm10

Human and mouse, built from GRCh38 and mm10 cellranger references, En-
sembl v84 gene annotations are used

Pre-built snRNA-seq references are summarized below.

13.3. Run Cell Ranger tools using cellranger_workflow 37

Cumulus Documentation

Keyword Description
GRCh38_premrna_v1.2.0
or
GRCh38_premrna

Human, introns included, built from GRCh38 cellranger reference 1.2.0, En-
sembl v84 gene annotation, treating annotated transcripts as exons

mm10_premrna_v1.2.0
or
mm10_premrna

Mouse, introns included, built from mm10 cellranger reference 1.2.0, En-
sembl v84 gene annotation, treating annotated transcripts as exons

GRCh38_premrna_and_mm10_premrna_v1.2.0
or
GRCh38_premrna_and_mm10_premrna

Human and mouse, introns included, built from GRCh38_premrna_v1.2.0
and mm10_premrna_v1.2.0

2. Index column.

Put 10x single cell 3’ sample index set names (e.g. SI-GA-A12) here.

3. Chemistry column.

According to cellranger count’s documentation, chemistry can be

Chemistry Explanation
auto autodetection (default). If the index read has extra bases besides cell barcode

and UMI, autodetection might fail. In this case, please specify the chemistry
threeprime Single Cell 3
fiveprime Single Cell 5
SC3Pv1 Single Cell 3 v1
SC3Pv2 Single Cell 3 v2
SC3Pv3 Single Cell 3 v3. You should set cellranger version input parameter to >=

3.0.2
SC5P-PE Single Cell 5 paired-end (both R1 and R2 are used for alignment)
SC5P-R2 Single Cell 5 R2-only (where only R2 is used for alignment)

4. DataType column.

This column is optional with a default rna. If you want to put a value, put rna here.

5. FetureBarcodeFile column.

Leave it blank for scRNA-seq and snRNA-seq.

6. Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType,FeatureBarcodeFile
sample_1,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,1-
→˓2,SI-GA-A8,threeprime,rna
sample_2,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,3-
→˓4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,5-6,
→˓SI-GA-C8,fiveprime,rna
sample_4,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,7-8,
→˓SI-GA-D8,fiveprime,rna
sample_1,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,1-
→˓2,SI-GA-A8,threeprime,rna
sample_2,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,3-
→˓4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,5-6,
→˓SI-GA-C8,fiveprime,rna

(continues on next page)

38 Chapter 13. Version 0.1.0 July 27, 2018

https://support.10xgenomics.com/single-cell-gene-expression/index/doc/specifications-sample-index-sets-for-single-cell-3

Cumulus Documentation

(continued from previous page)

sample_4,mm10_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,7-8,
→˓SI-GA-D8,fiveprime,rna

Workflow input

For sc/snRNA-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger
mkfastq and cellranger count. Revalant workflow inputs are described below, with required inputs high-
lighted in bold.

13.3. Run Cell Ranger tools using cellranger_workflow 39

Cumulus Documentation

NameDescription Example Default
input_csv_fileSample Sheet (contains Sample,

Reference, Flowcell, Lane, In-
dex as required and Chemistry,
DataType, FeatureBarcodeFile as
optional)

“gs://fc-e0000000-
0000-0000-0000-
000000000000/sample_sheet.csv”

output_directoryOutput directory “gs://fc-e0000000-
0000-0000-0000-
000000000000/cellranger_output”

Results are writ-
ten to $out-
put_directory/$bcl_directory_fastqs/fastq_path/
and will overwrite
any existing files at
this location.

run_mkfastqIf you want to run cellranger
mkfastq

true true

run_countIf you want to run cellranger
count

true true

delete_input_directoryIf delete BCL directories after de-
mux. If false, you should delete
this folder yourself so as to not in-
cur storage charges

false false

force_cellsForce pipeline to use this number
of cells, bypassing the cell detec-
tion algorithm, mutually exclusive
with expect_cells

6000

expect_cellsExpected number of recovered
cells. Mutually exclusive with
force_cells

3000

secondaryPerform Cell Ranger secondary
analysis (dimensionality reduc-
tion, clustering, etc.)

false false

cellranger_versioncellranger version, could be 3.1.0,
3.0.2, or 2.2.0

“3.1.0” “3.1.0”

docker_registryDocker registry to use for cell-
ranger_workflow. Options:

• “cumulusprod” for Docker
Hub images;

• “quay.io/cumulus” for
backup images on Red Hat
registry.

“cumulusprod” “cumulusprod”

cellranger_mkfastq_docker_registryDocker registry to use for
cellranger mkfastq. De-
fault is the registry to which only
Broad users have access. See
bcl2fastq for making your own
registry.

“gcr.io/broad-cumulus” “gcr.io/broad-
cumulus”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-a
us-central1-b
us-central1-c us-
central1-f us-east1-b
us-east1-c us-east1-d
us-west1-a us-west1-
b us-west1-c”

num_cpuNumber of cpus to request for one
node for cellranger mkfastq and
cellranger count

32 32

memoryMemory size string for cellranger
mkfastq and cellranger count

“120G” “120G”

mkfastq_disk_spaceOptional disk space in GB for mk-
fastq

1500 1500

count_disk_spaceDisk space in GB needed for cell-
ranger count

500 500

preemptibleNumber of preemptible tries 2 2

40 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Workflow output

See the table below for important sc/snRNA-seq outputs.

Name Type Description
output_fastqs_directory Array[String] A list of google bucket urls containing FASTQ files, one

url per flowcell.
output_count_directory Array[String] A list of google bucket urls containing count matrices,

one url per sample.
metrics_summaries File A excel spreadsheet containing QCs for each sample.
output_web_summary Array[File] A list of htmls visualizing QCs for each sample (cell-

ranger count output).
count_matrix String gs url for a template count_matrix.csv to run Cumulus.

13.3.3 Feature barcoding assays (cell & nucleus hashing, CITE-seq and Perturb-
seq)

cellranger_workflow can extract feature-barcode count matrices in CSV format for feature barcoding assays
such as cell and nucleus hashing, CITE-seq, and Perturb-seq. For cell and nucleus hashing as well as CITE-seq, the
feature refers to antibody. For Perturb-seq, the feature refers to guide RNA. Please follow the instructions below to
configure cellranger_workflow.

Prepare feature barcode files

Prepare a CSV file with the following format: feature_barcode,feature_name. See below for an example:

TTCCTGCCATTACTA,sample_1
CCGTACCTCATTGTT,sample_2
GGTAGATGTCCTCAG,sample_3
TGGTGTCATTCTTGA,sample_4

The above file describes a cell hashing application with 4 samples.

Then upload it to your google bucket:

gsutil antibody_index.csv gs://fc-e0000000-0000-0000-0000-000000000000/
→˓antibody_index.csv

Sample sheet

1. Reference column.

This column is not used for extracting feature-barcode count matrix. To be consistent, please put the
reference for the associated scRNA-seq assay here.

2. Index column.

The ADT/HTO index can be either Illumina index primer sequence (e.g. ATTACTCG, also known as
D701), or 10x single cell 3’ sample index set names (e.g. SI-GA-A12).

Note 1: All ADT/HTO index sequences (including 10x’s) should have the same length (8 bases). If
one index sequence is shorter (e.g. ATCACG), pad it with P7 sequence (e.g. ATCACGAT).

13.3. Run Cell Ranger tools using cellranger_workflow 41

https://support.10xgenomics.com/single-cell-gene-expression/index/doc/specifications-sample-index-sets-for-single-cell-3

Cumulus Documentation

Note 2: It is users’ responsibility to avoid index collision between 10x genomics’ RNA indexes (e.g.
SI-GA-A8) and Illumina index sequences for used here (e.g. ATTACTCG).

Note 3: For NextSeq runs, please reverse complement the ADT/HTO index primer sequence (e.g.
use reverse complement CGAGTAAT instead of ATTACTCG).

3. Chemistry column.

The following keywords are accepted for Chemistry column:

Chemistry Explanation
SC3Pv3 Single Cell 3 v3 (default).
SC3Pv2 Single Cell 3 v2
fiveprime Single Cell 5
SC5P-PE Single Cell 5 paired-end (both R1 and R2 are used for alignment)
SC5P-R2 Single Cell 5 R2-only (where only R2 is used for alignment)

4. DataType column.

Put adt here if the assay is CITE-seq, cell or nucleus hashing. Put crispr here if Perturb-seq.

5. FetureBarcodeFile column.

Put Google Bucket URL of the feature barcode file here.

6. Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType,FeatureBarcodeFile
sample_1_rna,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK18WBC6Z4,1-2,SI-GA-A8,threeprime,rna
sample_1_adt,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK18WBC6Z4,1-2,ATTACTCG,threeprime,adt,gs://fc-e0000000-0000-0000-0000-
→˓000000000000/antibody_index.csv
sample_2_adt,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK18WBC6Z4,3-4,TCCGGAGA,SC3Pv3,adt,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓antibody_index.csv
sample_3_crispr,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK18WBC6Z4,5-6,CGCTCATT,SC3Pv3,crispr,gs://fc-e0000000-0000-0000-0000-
→˓000000000000/crispr_index.csv

In the sample sheet above, despite the header row,

• First row describes the normal 3’ RNA assay;

• Second row describes its associated antibody tag data, which can from either a CITE-seq, cell hashing, or
nucleus hashing experiment.

• Third row describes another tag data, which is in 10x genomics’ V3 chemistry. For tag and crispr data, it is
important to explicitly state the chemistry (e.g. SC3Pv3).

• Last row describes one gRNA guide data for Perturb-seq (see crispr in DataType field).

Workflow input

For feature barcoding data, cellranger_workflow takes Illumina outputs as input and runs cellranger
mkfastq and cumulus adt. Revalant workflow inputs are described below, with required inputs highlighted
in bold.

42 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

NameDescription Example Default
input_csv_fileSample Sheet (contains Sample,

Reference, Flowcell, Lane, In-
dex as required and Chemistry,
DataType, FeatureBarcodeFile as
optional)

“gs://fc-e0000000-
0000-0000-0000-
000000000000/sample_sheet.csv”

output_directoryOutput directory “gs://fc-e0000000-
0000-0000-0000-
000000000000/cellranger_output”

run_mkfastqIf you want to run cellranger
mkfastq

true true

delete_input_directoryIf delete BCL directories after de-
mux. If false, you should delete
this folder yourself so as to not in-
cur storage charges

false false

scaffold_sequenceScaffold sequence in sgRNA for
Purturb-seq, only used for crispr
data type. If it is “”, we assume
guide barcode starts at position 0
of read 2

“GTTTAAGAGCTAAGCTGGAA” “”

max_mismatchMaximum hamming distance in
feature barcodes for the adt task

3 3

min_read_ratioMinimum read count ratio (non-
inclusive) to justify a feature
given a cell barcode and feature
combination, only used for the adt
task and crispr data type

0.1 0.1

cellranger_versioncellranger version, could be 3.1.0,
3.0.2, 2.2.0

“3.1.0” “3.1.0”

cumulus_feature_barcoding_versionCumulus_feature_barcoding ver-
sion for extracting feature barcode
matrix. Version available: 0.2.0.

“0.2.0” “0.2.0”

docker_registryDocker registry to use for cell-
ranger_workflow. Options:

• “cumulusprod” for Docker
Hub images;

• “quay.io/cumulus” for
backup images on Red Hat
registry.

“cumulusprod” “cumulusprod”

mkfastq_docker_registryDocker registry to use for
cellranger mkfastq. De-
fault is the registry to which only
Broad users have access. See
bcl2fastq for making your own
registry.

“gcr.io/broad-cumulus” “gcr.io/broad-
cumulus”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-a
us-central1-b
us-central1-c us-
central1-f us-east1-b
us-east1-c us-east1-d
us-west1-a us-west1-
b us-west1-c”

num_cpuNumber of cpus to request for one
node for cellranger mkfastq

32 32

memoryMemory size string for cellranger
mkfastq

“120G” “120G”

feature_memoryOptional memory string for ex-
tracting feature count matrix

“32G” “32G”

mkfastq_disk_spaceOptional disk space in GB for mk-
fastq

1500 1500

feature_disk_spaceDisk space in GB needed for ex-
tracting feature count matrix

100 100

preemptibleNumber of preemptible tries 2 2

13.3. Run Cell Ranger tools using cellranger_workflow 43

Cumulus Documentation

Parameters used for feature count matrix extraction

If the chemistry is V2, 10x genomics v2 cell barcode white list will be used, a hamming distance of 1 is allowed for
matching cell barcodes, and the UMI length is 10. If the chemistry is V3, 10x genomics v3 cell barcode white list will
be used, a hamming distance of 0 is allowed for matching cell barcodes, and the UMI length is 12.

For Perturb-seq data, a small number of sgRNA protospace sequences will be sequenced ultra-deeply and we may
have PCR chimeric reads. Therefore, we generate filtered feature count matrices as well in a data driven manner:

1. First, plot the histogram of UMIs with certain number of read counts. The number of UMIs with x supporting
reads decreases when x increases. We start from x = 1, and a valley between two peaks is detected if we find
count[x] < count[x + 1] < count[x + 2]. We filter out all UMIs with < x supporting reads
since they are likely formed due to chimeric reads.

2. In addition, we also filter out barcode-feature-UMI combinations that have their read count ratio, which is
defined as total reads supporting barcode-feature-UMI over total reads supporting barcode-UMI, no larger than
min_read_ratio parameter set above.

Workflow outputs

See the table below for important outputs.

Name Type Description
output_fastqs_directory Array[String] A list of google bucket urls containing FASTQ files, one

url per flowcell.
output_count_directory Array[String] A list of google bucket urls containing feature-barcode

count matrices, one url per sample.
count_matrix String gs url for a template count_matrix.csv to run cumulus.

In addition, For each antibody tag or crispr tag sample, a folder with the sample ID is generated under
output_directory. In the folder, two files — sample_id.csv and sample_id.stat.csv.gz — are
generated.

sample_id.csv is the feature count matrix. It has the following format. The first line describes the column names:
Antibody/CRISPR,cell_barcode_1,cell_barcode_2,...,cell_barcode_n. The following lines
describe UMI counts for each feature barcode, with the following format: feature_name,umi_count_1,
umi_count_2,...,umi_count_n.

sample_id.stat.csv.gz stores the gzipped sufficient statistics. It has the following format. The first line
describes the column names: Barcode,UMI,Feature,Count. The following lines describe the read counts for
every barcode-umi-feature combination.

If data type is crispr, three additional files, sample_id.umi_count.pdf, sample_id.filt.csv and
sample_id.filt.stat.csv.gz, are generated.

sample_id.umi_count.pdf plots number of UMIs against UMI with certain number of reads and colors UMIs
with high likelihood of being chimeric in blue and other UMIs in red. This plot is generated purely based on number
of reads each UMI has.

sample_id.filt.csv is the filtered feature count matrix. It has the same format as sample_id.csv.

sample_id.filt.stat.csv.gz is the filtered sufficient statistics. It has the same format as sample_id.
stat.csv.gz.

44 Chapter 13. Version 0.1.0 July 27, 2018

gs://regev-lab/resources/cellranger/737K-august-2016.txt.gz
gs://regev-lab/resources/cellranger/3M-february-2018.txt.gz

Cumulus Documentation

13.3.4 Single-cell ATAC-seq

To process scATAC-seq data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scATAC-seq references are summarized below.

Keyword Description
GRCh38_atac_v1.2.0Human GRCh38, cellranger-atac reference 1.2.0
mm10_atac_v1.2.0Mouse mm10, cellranger-atac reference 1.2.0
hg19_atac_v1.2.0 Human hg19, cellranger-atac reference 1.2.0
b37_atac_v1.2.0 Human b37 build, cellranger-atac reference 1.2.0
GRCh38_and_mm10_atac_v1.2.0Human GRCh38 and mouse mm10, cellranger-atac reference 1.2.0
hg19_and_mm10_atac_v1.2.0Human hg19 and mouse mm10, cellranger-atac reference 1.2.0
GRCh38_atac_v1.1.0Human GRCh38, cellranger-atac reference 1.1.0
mm10_atac_v1.1.0Mouse mm10, cellranger-atac reference 1.1.0
hg19_atac_v1.1.0 Human hg19, cellranger-atac reference 1.1.0
b37_atac_v1.1.0 Human b37 build, cellranger-atac reference 1.1.0
GRCh38_and_mm10_atac_v1.1.0Human GRCh38 and mouse mm10, cellranger-atac reference 1.1.0
hg19_and_mm10_atac_v1.1.0Human hg19 and mouse mm10, cellranger-atac reference 1.1.0

2. Index column.

Put 10x single cell ATAC sample index set names (e.g. SI-NA-B1) here.

3. Chemistry column.

This column is not used for scATAC-seq data. Put auto here as a placeholder if you decide to include
the Chemistry column.

4. DataType column.

Set it to atac.

5. FetureBarcodeFile column.

Leave it blank for scATAC-seq.

6. Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType
sample_atac,GRCh38_atac_v1.1.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK10WBC9YB,*,SI-NA-A1,auto,atac

Workflow input

cellranger_workflow takes Illumina outputs as input and runs cellranger-atac mkfastq and
cellranger-atac count. Please see the description of inputs below. Note that required inputs are shown
in bold.

13.3. Run Cell Ranger tools using cellranger_workflow 45

https://support.10xgenomics.com/single-cell-atac/sequencing/doc/specifications-sample-index-sets-for-single-cell-atac

Cumulus Documentation

NameDescription Example Default
input_csv_fileSample Sheet (contains Sample, Ref-

erence, Flowcell, Lane, Index as re-
quired and Chemistry, DataType, Fea-
tureBarcodeFile as optional)

“gs://fc-e0000000-0000-0000-0000-
000000000000/sample_sheet.csv”

output_directoryOutput directory “gs://fc-e0000000-0000-0000-0000-
000000000000/cellranger_output”

run_mkfastqIf you want to run
cellranger-atac mkfastq

true true

run_countIf you want to run
cellranger-atac count

true true

delete_input_directoryIf delete BCL directories after demux.
If false, you should delete this folder
yourself so as to not incur storage
charges

false false

force_cellsForce pipeline to use this number of
cells, bypassing the cell detection al-
gorithm

6000

cellranger_atac_versioncellranger-atac version, currently only
1.1.0

“1.1.0” “1.1.0”

docker_registryDocker registry to use for cell-
ranger_workflow. Options:

• “cumulusprod” for Docker Hub
images;

• “quay.io/cumulus” for backup
images on Red Hat registry.

“cumulusprod” “cumulusprod”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-a us-
central1-b us-central1-c
us-central1-f us-east1-b
us-east1-c us-east1-d
us-west1-a us-west1-b
us-west1-c”

atac_num_cpuNumber of cpus for cellranger-atac
count

64 64

atac_memoryMemory string for cellranger-atac
count

“57.6G” “57.6G”

mkfastq_disk_spaceOptional disk space in GB for
cellranger-atac mkfastq

1500 1500

atac_disk_spaceDisk space in GB needed for
cellranger-atac count

500 500

preemptibleNumber of preemptible tries 2 2

Workflow output

See the table below for important scATAC-seq outputs.

46 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Name Type Description
output_fastqs_directory Array[String] A list of google bucket urls containing FASTQ files, one

url per flowcell.
output_count_directory Array[String] A list of google bucket urls containing cellranger-atac

count outputs, one url per sample.
metrics_summaries File A excel spreadsheet containing QCs for each sample.
output_web_summary Array[File] A list of htmls visualizing QCs for each sample (cell-

ranger count output).
count_matrix String gs url for a template count_matrix.csv to run cumulus.

Aggregate scATAC-Seq Samples

To aggregate multiple scATAC-Seq samples, follow the instructions below:

1. Import cellranger_atac_aggr workflow. Please see Step 1 here, and the name of workflow is
“cumulus/cellranger_atac_aggr”.

2. Set the inputs of workflow. Please see the description of inputs below. Notice that required inputs are shown in
bold:

13.3. Run Cell Ranger tools using cellranger_workflow 47

./cellranger.html#a-general-step-by-step-instruction

Cumulus Documentation

NameDescription Example Default
aggr_idAggregate ID. “aggr_sample”
input_counts_directoriesA string contains comma-separated

URLs to directories of samples to be
aggregated.

“gs://fc-e0000000-0000-0000-0000-
000000000000/data/sample1,gs://fc-
e0000000-0000-0000-0000-
000000000000/data/sample2”

output_directoryOutput directory “gs://fc-e0000000-0000-0000-0000-
000000000000/aggregate_result”

genomeThe reference genome name used by
Cell Ranger, can be either a key-
word of pre-built genome, or a Google
Bucket URL. See this table for the list
of keywords of pre-built genomes.

“GRCh38_atac_v1.2.0”

normalizeSample normalization mode. Options
are: none, depth, or signal.

“none” “none”

secondaryPerform secondary analysis (dimen-
sionality reduction, clustering and vi-
sualization).

false false

dim_reduceChose the algorithm for dimensional-
ity reduction prior to clustering and
tsne. Options are: lsa, plsa, or
pca.

“lsa” “lsa”

cellranger_atac_versionCell Ranger ATAC version to use. Op-
tions: 1.2.0.

“1.2.0” “1.2.0”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-b”
num_cpuNumber of cpus to request for cell-

ranger atac aggr.
64 64

memoryMemory size string for cellranger atac
aggr.

“57.6G” “57.6G”

disk_spaceDisk space in GB needed for cell-
ranger atac aggr.

500 500

preemptibleNumber of preemptible tries. 2 2
docker_registryDocker registry to use for cell-

ranger_workflow. Options:
• “cumulusprod” for Docker Hub

images;
• “quay.io/cumulus” for backup

images on Red Hat registry.

“cumulusprod” “cumulusprod”

3. Check out the output in output_directory/aggr_id folder, where output_directory and
aggr_id are the inputs you set in Step 2.

13.3.5 Single-cell immune profiling

To process single-cell immune profiling (scIR-seq) data, follow the specific instructions below.

Sample sheet

1. Reference column.

48 Chapter 13. Version 0.1.0 July 27, 2018

./cellranger.html#single-cell-and-single-nucleus-rna-seq

Cumulus Documentation

Pre-built scIR-seq references are summarized below.

Keyword Description
GRCh38_vdj_v3.1.0Human GRCh38 V(D)J sequences, cellranger reference 3.1.0, annotation

built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
GRCm38_vdj_v3.1.0Mouse GRCm38 V(D)J sequences, cellranger reference 3.1.0, annotation

built from Ensembl Mus_musculus.GRCm38.94.gtf
GRCh38_vdj_v2.0.0
or GRCh38_vdj

Human GRCh38 V(D)J sequences, cellranger reference 2.0.0, annotation
built from Ensembl Homo_sapiens.GRCh38.87.chr_patch_hapl_scaff.gtf and
vdj_GRCh38_alts_ensembl_10x_genes-2.0.0.gtf

GRCm38_vdj_v2.2.0
or
GRCm38_vdj

Mouse GRCm38 V(D)J sequences, cellranger reference 2.2.0, annotation
built from Ensembl Mus_musculus.GRCm38.90.chr_patch_hapl_scaff.gtf

2. Index column.

Put 10x single cell V(D)J sample index set names (e.g. SI-GA-A3) here.

3. Chemistry column.

This column is not used for scIR-seq data. Put fiveprime here as a placeholder if you decide to
include the Chemistry column.

4. DataType column.

Set it to vdj.

5. FetureBarcodeFile column.

Leave it blank for scIR-seq.

6. Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType
sample_vdj,GRCh38_vdj_v3.1.0,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓VK10WBC9ZZ,1,SI-GA-A1,fiveprime,vdj

Workflow input

For scIR-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq
and cellranger vdj. Revalant workflow inputs are described below, with required inputs highlighted in bold.

13.3. Run Cell Ranger tools using cellranger_workflow 49

https://support.10xgenomics.com/single-cell-vdj/sequencing/doc/specifications-sample-index-sets-for-single-cell-vdj

Cumulus Documentation

NameDescription Example Default
input_csv_fileSample Sheet (contains Sample, Ref-

erence, Flowcell, Lane, Index as re-
quired and Chemistry, DataType, Fea-
tureBarcodeFile as optional)

“gs://fc-e0000000-0000-0000-0000-
000000000000/sample_sheet.csv”

output_directoryOutput directory “gs://fc-e0000000-0000-0000-0000-
000000000000/cellranger_output”

run_mkfastqIf you want to run cellranger
mkfastq

true true

delete_input_directoryIf delete BCL directories after demux.
If false, you should delete this folder
yourself so as to not incur storage
charges

false false

force_cellsForce pipeline to use this number of
cells, bypassing the cell detection al-
gorithm

6000

vdj_denovoDo not align reads to reference V(D)J
sequences before de novo assembly

false false

cellranger_versioncellranger version, could be 3.1.0,
3.0.2, 2.2.0

“3.1.0” “3.1.0”

docker_registryDocker registry to use for cell-
ranger_workflow. Options:

• “cumulusprod” for Docker Hub
images;

• “quay.io/cumulus” for backup
images on Red Hat registry.

“cumulusprod” “cumulusprod”

cellranger_mkfastq_docker_registryDocker registry to use for
cellranger mkfastq. Default is
the registry to which only Broad users
have access. See bcl2fastq for making
your own registry.

“gcr.io/broad-cumulus” “gcr.io/broad-cumulus”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-a us-
central1-b us-central1-c
us-central1-f us-east1-b
us-east1-c us-east1-d
us-west1-a us-west1-b
us-west1-c”

num_cpuNumber of cpus to request for one
node for cellranger mkfastq and cell-
ranger vdj

32 32

memoryMemory size string for cellranger mk-
fastq and cellranger vdj

“120G” “120G”

mkfastq_disk_spaceOptional disk space in GB for mkfastq 1500 1500
vdj_disk_spaceDisk space in GB needed for cell-

ranger vdj
500 500

preemptibleNumber of preemptible tries 2 2

Workflow output

See the table below for important scIR-seq outputs.

50 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Name Type Description
output_fastqs_directory Array[String] A list of google bucket urls containing FASTQ files, one

url per flowcell.
output_vdj_directory Array[String] A list of google bucket urls containing vdj results, one

url per sample.
metrics_summaries File A excel spreadsheet containing QCs for each sample.
output_web_summary Array[File] A list of htmls visualizing QCs for each sample (cell-

ranger count output).
count_matrix String gs url for a template count_matrix.csv to run cumulus.

13.3.6 Build Cell Ranger References

We provide routines wrapping Cell Ranger tools to build references for sc/snRNA-seq, scATAC-seq and single-cell
immune profiling data.

Build references for sc/snRNA-seq

We provide a wrapper of cellranger mkref to build sc/snRNA-seq references. Please follow the instructions
below.

1. Import cellranger_create_reference

Import cellranger_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow. The cellranger_workflow workflow is under Broad
Methods Repository with name “cumulus/cellranger_create_reference”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export cellranger_create_reference workflow in the drop-down menu.

2. Upload requred data to Google Bucket

Required data may include input sample sheet, genome FASTA files and gene annotation GTF files.

3. Input sample sheet

If multiple species are specified, a sample sheet in CSV format is required. We describe the sample sheet
format below, with required columns highlighted in bold:

Column Description
Genome Genome name
Fasta Location to the genome assembly in FASTA/FASTA.gz format
Genes Location to the gene annotation file in GTF/GTF.gz format
Attributes Optional, A list of key:value pairs separated by ;. If set, cellranger mkgtf

will be called to filter the user-provided GTF file. See 10x filter with mkgtf for more
details

13.3. Run Cell Ranger tools using cellranger_workflow 51

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#mkgtf

Cumulus Documentation

Please note that the columns in the CSV can be in any order, but that the column names must match the
recognized headings.

See below for an example for building Example:

Genome,Fasta,Genes,Attributes
GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/GRCh38.fa.gz,gs://fc-
→˓e0000000-0000-0000-0000-000000000000/GRCh38.gtf.gz,gene_biotype:protein_
→˓coding;gene_biotype:lincRNA;gene_biotype:antisense
mm10,gs://fc-e0000000-0000-0000-0000-000000000000/mm10.fa.gz,gs://fc-
→˓e0000000-0000-0000-0000-000000000000/mm10.gtf.gz

If multiple species are specified, the reference will built under Genome names concatenated by ‘_and_’s.
In the above example, the reference is stored under ‘GRCh38_and_mm10’.

4. Workflow input

Required inputs are highlighted in bold. Note that input_sample_sheet and input_fasta, input_gtf ,
genome and attributes are mutually exclusive.

52 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

NameDescription Example Default
input_sample_sheetA sample sheet in CSV format al-

lows users to specify more than 1
genomes to build references (e.g.
human and mouse). If a sample
sheet is provided, input_fasta, in-
put_gtf, and attributes will be ig-
nored.

“gs://fc-e0000000-
0000-0000-0000-
000000000000/input_sample_sheet.csv”

input_fastaInput genome reference in either
FASTA or FASTA.gz format

“gs://fc-e0000000-
0000-0000-0000-
000000000000/Homo_sapiens.GRCh38.dna.toplevel.fa.gz”

input_gtfInput gene annotation file in either
GTF or GTF.gz format

“gs://fc-e0000000-
0000-0000-0000-
000000000000/Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf.gz”

genomeGenome reference name. New
reference will be stored in a folder
named genome

refdata-cellranger-vdj-GRCh38-
alts-ensembl-3.1.0

output_directoryOutput directory “gs://fc-e0000000-
0000-0000-0000-
000000000000/cellranger_reference”

attributesA list of key:value pairs
separated by ;. If this op-
tion is not None, cellranger
mkgtf will be called to filter the
user-provided GTF file. See 10x
filter with mkgtf for more details

“gene_biotype:protein_coding;gene_biotype:lincRNA;gene_biotype:antisense”

pre_mrnaIf we want to build pre-mRNA
references, in which we use full
length transcripts as exons in
the annotation file. We follow
10x build Cell Ranger compatible
pre-mRNA Reference Package to
build pre-mRNA references

true false

ref_versionreference version string Ensembl v94
cellranger_versioncellranger version, could be 3.1.0,

3.0.2, or 2.2.0
“3.1.0” “3.1.0”

docker_registryDocker registry to use for cell-
ranger_workflow. Options:

• “cumulusprod” for Docker
Hub images;

• “quay.io/cumulus” for
backup images on Red Hat
registry.

“cumulusprod” “cumulusprod”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-a
us-central1-b
us-central1-c us-
central1-f us-east1-b
us-east1-c us-east1-d
us-west1-a us-west1-
b us-west1-c”

num_cpuNumber of cpus to request for one
node for building indices

1 1

memoryMemory size in GB 32 32
disk_spaceOptional disk space in GB 100 100
preemptibleNumber of preemptible tries 2 213.3. Run Cell Ranger tools using cellranger_workflow 53

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#mkgtf
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#mkgtf
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna

Cumulus Documentation

5. Workflow output

Name Type Description
output_referenceFile Gzipped reference folder with name genome.tar.gz. We will also store

a copy of the gzipped tarball under output_directory specified in the
input.

Build references for scATAC-seq

We provide a wrapper of cellranger-atac mkref to build scATAC-seq references. Please follow the instruc-
tions below.

1. Import cellranger_atac_create_reference

Import cellranger_atac_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow. The cellranger_workflow workflow is under Broad
Methods Repository with name “cumulus/cellranger_atac_create_reference”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export cellranger_atac_create_reference workflow in the drop-down
menu.

2. Upload required data to Google Bucket

Required data include config JSON file, genome FASTA file, gene annotation file (GTF or GFF3 format)
and motif input file (JASPAR format).

3. Workflow input

Required inputs are highlighted in bold.

54 Chapter 13. Version 0.1.0 July 27, 2018

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

NameDescription Example Default
genomeGenome reference name. New

reference will be stored in a folder
named genome

refdata-cellranger-atac-mm10-
1.1.0

config_jsonConfiguration file defined in 10x
genomics configuration file. Note
that links to files in the JSON must
be Google bucket URLs

“gs://fc-e0000000-0000-0000-
0000-000000000000/config.json”

output_directoryOutput directory “gs://fc-e0000000-
0000-0000-0000-
000000000000/cellranger_atac_reference”

cellranger_atac_versioncellranger-atac version, could be
1.1.0

“1.1.0” “1.1.0”

docker_registryDocker registry to use for cell-
ranger_workflow. Options:

• “cumulusprod” for Docker
Hub images;

• “quay.io/cumulus” for
backup images on Red Hat
registry.

“cumulusprod” “cumulusprod”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-a
us-central1-b
us-central1-c us-
central1-f us-east1-b
us-east1-c us-east1-d
us-west1-a us-west1-
b us-west1-c”

memoryMemory size string for cellranger-
atac mkref

“32G” “32G”

disk_spaceOptional disk space in GB 100 100
preemptibleNumber of preemptible tries 2 2

4. Workflow output

Name Type Description
output_referenceFile Gzipped reference folder with name genome.tar.gz. We will also store

a copy of the gzipped tarball under output_directory specified in the
input.

Build references for single-cell immune profiling data

We provide a wrapper of cellranger mkvdjref to build single-cell immune profiling references. Please follow
the instructions below.

1. Import cellranger_vdj_create_reference

Import cellranger_vdj_create_reference workflow to your workspace.

13.3. Run Cell Ranger tools using cellranger_workflow 55

https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/advanced/references#config
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/advanced/references#config

Cumulus Documentation

See the Terra documentation for adding a workflow. The cellranger_workflow workflow is under Broad
Methods Repository with name “cumulus/cellranger_vdj_create_reference”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export cellranger_vdj_create_reference workflow in the drop-down
menu.

2. Upload requred data to Google Bucket

Required data include genome FASTA file and gene annotation file (GTF format).

3. Workflow input

Required inputs are highlighted in bold.

NameDescription Example Default
input_fastaInput genome reference in either

FASTA or FASTA.gz format
“gs://fc-e0000000-
0000-0000-0000-
000000000000/Homo_sapiens.GRCh38.dna.toplevel.fa.gz”

input_gtfInput gene annotation file in either
GTF or GTF.gz format

“gs://fc-e0000000-
0000-0000-0000-
000000000000/Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf.gz”

genomeGenome reference name. New
reference will be stored in a folder
named genome

refdata-cellranger-vdj-GRCh38-
alts-ensembl-3.1.0

output_directoryOutput directory “gs://fc-e0000000-
0000-0000-0000-
000000000000/cellranger_vdj_reference”

ref_versionreference version string Ensembl v94
cellranger_versioncellranger version, could be 3.1.0,

3.0.2, or 2.2.0
“3.1.0” “3.1.0”

docker_registryDocker registry to use for cell-
ranger_workflow. Options:

• “cumulusprod” for Docker
Hub images;

• “quay.io/cumulus” for
backup images on Red Hat
registry.

“cumulusprod” “cumulusprod”

zones Google cloud zones “us-central1-a us-west1-a” “us-central1-a
us-central1-b
us-central1-c us-
central1-f us-east1-b
us-east1-c us-east1-d
us-west1-a us-west1-
b us-west1-c”

memoryMemory size string for cellranger-
atac mkref

“32G” “32G”

disk_spaceOptional disk space in GB 100 100
preemptibleNumber of preemptible tries 2 2

56 Chapter 13. Version 0.1.0 July 27, 2018

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

4. Workflow output

Name Type Description
output_referenceFile Gzipped reference folder with name genome.tar.gz. We will also store

a copy of the gzipped tarball under output_directory specified in the
input.

13.4 bcl2fastq

13.4.1 License

bcl2fastq license

13.4.2 Workflows

Workflows such as cellranger_workflow and dropseq_workflow provide the option of running bcl2fastq. We
provide dockers containing bcl2fastq that are accessible only by members of the Broad Institute. Non-Broad
Institute members will have to provide their own docker images. Please note that if you’re a Broad Institute member
and are not able to pull the docker image, please check https://app.terra.bio/#groups to see that you’re a member of the
all_broad_users group. If not, please contact Terra support and ask to be added to the all_broad_users@firecloud.org
group.

13.4.3 Docker

Read this tutorial if you are new to Docker.

Then for a Debian based docker (e.g. continuumio/miniconda3), create the Dockerfile as follows:

RUN apt-get update && apt-get install --no-install-recommends -y alien unzip
ADD bcl2fastq2-v2-20-0-linux-x86-64.zip /software/
RUN unzip -d /software/ /software/bcl2fastq2-v2-20-0-linux-x86-64.zip && alien -i /
→˓software/bcl2fastq2-v2.20.0.422-Linux-x86_64.rpm && rm /software/bcl2fastq2-v2*

Next, download bcl2fastq from the Illumina website, which requires registration. Choose the Linux rpm file
format and download bcl2fastq2-v2-20-0-linux-x86-64.zip to the same directory as your Dockerfile.

You can host your private docker images in the Google Container Registry.

13.4.4 Example

In this example we create a docker image for running cellranger mkfastq version 3.0.2.

1. Create a GCP project or reuse an existing project.

2. Enable the Google Container Registry

3. Clone the cumulus repository:

git clone https://github.com/klarman-cell-observatory/cumulus.git

4. Add the lines to cumulus/docker/cellranger/3.0.2/Dockerfile to include bcl2fastq (see Docker).

13.4. bcl2fastq 57

https://support.illumina.com/content/dam/illumina-support/documents/downloads/software/bcl2fastq/bcl2fastq2-v2-20-eula.pdf
https://app.terra.bio/#groups
mailto:all_broad_users@firecloud.org
https://docs.docker.com/get-started/
https://hub.docker.com/r/continuumio/miniconda3
https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html
https://cloud.google.com/container-registry/docs/

Cumulus Documentation

5. Ensure you have Docker installed

6. Download cellranger from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/
3.0

7. Build, tag, and push the docker. Remember to replace PROJECT_ID with your GCP project id:

cd cumulus/docker/cellranger/3.0.2/
docker build -t cellranger-3.0.2 .
docker tag cellranger-3.0.2 gcr.io/PROJECT_ID/cellranger:3.0.2
gcr.io/PROJECT_ID/cellranger:3.0.2

8. Import cellranger_workflow workflow to your workspace (see cellranger_workflow steps),
and enter your docker registry URL (in this example, "gcr.io/PROJECT_ID/") in
cellranger_mkfastq_docker_registry field of cellranger_workflow inputs.

13.5 Cell Ranger alternatives to generate gene-count matrices for
10X data

This count workflow generates gene-count matrices from 10X FASTQ data using alternative methods other than Cell
Ranger.

13.5.1 Prepare input data and import workflow

1. Run cellranger_workflow to generate FASTQ data

You can skip this step if your data are already in FASTQ format.

Otherwise, you need to first run cellranger_workflow to generate FASTQ files from BCL raw data for
each sample. Please follow cellranger_workflow manual.

Notice that you should set run_mkfastq to true to get FASTQ output. You can also set run_count to
false if you want to skip Cell Ranger count, and only use the result from count workflow.

For Non-Broad users, you’ll need to build your own docker for bcl2fastq step. Instructions are here.

2. Import count

Import count workflow to your workspace.

See the Terra documentation for adding a workflow. The count workflow is under Broad Methods
Repository with name “cumulus/count”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export count workflow in the drop-down menu.

3. Prepare a sample sheet

3.1 Sample sheet format:

The sample sheet for count workflow should be in TSV format, i.e. columns are seperated by tabs not
commas. Please note that the columns in the TSV can be in any order, but that the column names must
match the recognized headings.

58 Chapter 13. Version 0.1.0 July 27, 2018

https://www.docker.com/products/docker-desktop
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.0
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.0
./cellranger.html
./cellranger.html#cellranger-workflow-inputs
cellranger.html
bcl2fastq.html
https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

The sample sheet describes how to identify flowcells and generate channel-specific count matrices.

A brief description of the sample sheet format is listed below (required column headers are shown in
bold).

Column Description
Sample Contains sample names. Each 10x channel should have a unique sample name.
Flowcells Indicates the Google bucket URLs of folder(s) holding FASTQ files of this sample.

The sample sheet supports sequencing the same 10x channel across multiple flowcells. If a sample is
sequenced across multiple flowcells, simply list all of its flowcells in a comma-seperated way. In the
following example, we have 2 samples sequenced in two flowcells.

Example:

Sample Flowcells
sample_1 gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4/
→˓sample_1_fastqs,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2/
→˓sample_1_fastqs
sample_2 gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4/
→˓sample_2_fastqs

Moreover, if one flowcell of a sample contains multiple FASTQ files for each read, i.e. sequences from
multiple lanes, you should keep your sample sheet as the same, and count workflow will automatically
merge lanes altogether for the sample before performing counting.

3.2 Upload your sample sheet to the workspace bucket:

Use gsutil (you already have it if you’ve installed Google cloud SDK) in your unix terminal to upload
your sample sheet to workspace bucket.

Example:

gsutil cp /foo/bar/projects/sample_sheet.tsv gs://fc-e0000000-0000-0000-0000-
→˓000000000000/

4. Launch analysis

In your workspace, open count in WORKFLOWS tab. Select the desired snapshot version (e.g. latest).
Select Process single workflow from files as below

and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values
in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag
or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.

13.5. Cell Ranger alternatives to generate gene-count matrices for 10X data 59

https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

13.5.2 Workflow inputs

Below are inputs for count workflow. Notice that required inputs are in bold.

60 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Name Description Example Default
input_tsv_fileInput TSV sample sheet describing metadata of each

sample.
“gs://fc-e0000000-
0000-0000-0000-
000000000000/sample_sheet.tsv”

genome Genome reference name. Current support: GRCh38,
mm10.

“GRCh38”

chemistry 10X genomics’ chemistry name. Current support:
“tenX_v3” (for V3 chemistry), “tenX_v2” (for V2
chemistry).

“tenX_v3”

output_directoryGS URL of output directory. “gs://fc-e0000000-
0000-0000-0000-
000000000000/count_result”

run_count If you want to run count tools to generate gene-count
matrices.

true true

count_tool Count tool to generate result. Options:
• “StarSolo”: Use STARsolo.
• “Optimus”: Use Optimus pipeline, developed by

the Data Coordination Platform team of the Hu-
man Cell Atlas.

• “Bustools”: Use Kallisto BUSTools.
• “Alevin”: Use Salmon Alevin.

“StarSolo” “StarSolo”

docker_registryDocker registry to use. Notice that docker image for
Bustools is seperate.

• “cumulusprod” for Docker Hub images;
• “quay.io/cumulus” for backup images on Red Hat

registry.

“cumulusprod”

zones Google cloud zones to consider for execution. “us-east1-d us-west1-a us-
west1-b”

“us-
central1-
a us-
central1-
b us-
central1-
c us-
central1-f
us-east1-b
us-east1-c
us-east1-d
us-west1-a
us-west1-b
us-west1-
c”

num_cpu

Number of CPUs to request for count per channel.
Notice that when use Optimus for count, this input only
affects steps of copying files. Optimus uses CPUs due
to its own strategy.

32 32

disk_space

Disk space in GB needed for count per channel.
Notice that when use Optimus for count, this input only
affects steps of copying files. Optimus uses disk space
due to its own strategy.

500 500

memory

Memory size in GB needed for count per channel.
Notice that when use Optimus for count, this input only
affects steps of copying files. Optimus uses memory
size due to its own strategy.

120 120

preemptible

Number of maximum preemptible tries allowed.
Notice that when use Optimus for count, this input only
affects steps of copying files. Optimus uses
preemptible tries due to its own strategy.

2 2

merge_fastq_memoryMemory size in GB needed for merge fastq per channel. 32 32
starsolo_star_version

STAR version to use. Currently only support “2.7.3a”.
This input only works when setting count_tool to
StarSolo.

“2.7.3a” “2.7.3a”

alevin_version

Salmon version to use. Currently only support “1.1”.
This input only works when setting count_tool to
Alevin.

“1.1” “1.1”

bustools_output_loom

If BUSTools generates gene-count matrices in loom
format.
This input only works when setting count_tool to
Bustools.

false false

bustools_output_h5ad

If BUSTools generates gene-count matrices in h5ad
format.
This input only works when setting count_tool to
Bustools.

false false

bustools_docker

Docker image used for Kallisto BUSTools count.
This input only works when setting count_tool to
Bustools.

“shaleklab/kallisto-
bustools”

“shaleklab/kallisto-
bustools”

bustools_version

kb version to use. Currently only support “0.24.4”.
This input only works when setting count_tool to
Bustools.

“0.24.4” “0.24.4”

optimus_output_loom

If Optimus generates gene-count matrices in loom
format.
This input only works when setting count_tool to
Optimus.

true true

13.5. Cell Ranger alternatives to generate gene-count matrices for 10X data 61

https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md
https://github.com/HumanCellAtlas/skylab/tree/master/pipelines/optimus
https://www.kallistobus.tools/introduction
https://salmon.readthedocs.io/en/latest/alevin.html

Cumulus Documentation

13.5.3 Workflow outputs

See the table below for count workflow outputs.

Name Type Description
output_folder String Google Bucket URL of output directory. Within it, each

folder is for one sample in the input sample sheet.

13.6 Extract gene-count matrices from plated-based SMART-Seq2
data

13.6.1 Run SMART-Seq2 Workflow

Follow the steps below to extract gene-count matrices from SMART-Seq2 data on Terra. This WDL aligns reads using
Bowtie 2 and estimates expression levels using RSEM.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information
panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

62 Chapter 13. Version 0.1.0 July 27, 2018

https://app.terra.bio/
https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel
free to change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil available by running:

reuse Google-Cloud-SDK

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket.
For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4
to a Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-
→˓0000-0000-000000000000/VK18WBC6Z4

-m means copy in parallel, -r means copy the directory recursively.

2. Create a sample sheet.

Please note that the columns in the CSV can be in any order, but that the column names must match
the recognized headings.

The sample sheet provides metadata for each cell:

Column Description
Cell Cell name.
Plate Plate name. Cells with the same plate name are from the same plate.
Read1 Location of the FASTQ file for read1 in the cloud (gsurl).
Read2 (Optional). Location of the FASTQ file for read2 in the cloud (gsurl). This field

can be skipped for single-end reads.

Example:

Cell,Plate,Read1,Read2
cell-1,plate-1,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/
→˓cell-1_L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-
→˓000000000000/smartseq2/cell-1_L001_R2_001.fastq.gz
cell-2,plate-1,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/
→˓cell-2_L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-
→˓000000000000/smartseq2/cell-2_L001_R2_001.fastq.gz
cell-3,plate-2,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/
→˓cell-3_L001_R1_001.fastq.gz,
cell-4,plate-2,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/
→˓cell-4_L001_R1_001.fastq.gz,

3. Upload your sample sheet to the workspace bucket.

Example:

gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-0000-
→˓0000-000000000000/

4. Import smartseq2 workflow to your workspace.

13.6. Extract gene-count matrices from plated-based SMART-Seq2 data 63

https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

See the Terra documentation for adding a workflow. The smartseq2 workflow is under Broad
Methods Repository with name “cumulus/smartseq2”.

Moreover, in the workflow page, click Export to Workspace... button, and select the
workspace to which you want to export smartseq2 workflow in the drop-down menu.

5. In your workspace, open smartseq2 in WORKFLOWS tab. Select Run workflow with inputs
defined by file paths as below

and click SAVE button.

Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

64 Chapter 13. Version 0.1.0 July 27, 2018

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

Name Description Example Default
input_csv_fileSample Sheet (contains Cell, Plate, Read1,

Read2)
“gs://fc-e0000000-0000-0000-0000-
000000000000/sample_sheet.csv”

output_directoryOutput directory “gs://fc-e0000000-0000-0000-0000-
000000000000/smartseq2_output”

referenceReference transcriptome to align reads to. Ac-
ceptable values:

• Pre-created genome references:
– “GRCh38_ens93filt” for human,

genome version is GRCh38, gene
annotation is generated using hu-
man Ensembl 93 GTF according to
cellranger mkgtf;

– “GRCm38_ens93filt” for mouse,
genome version is GRCm38, gene
annotation is generated using
mouse Ensembl 93 GTF according
to cellranger mkgtf;

• Create a custom genome reference us-
ing smartseq2_create_reference work-
flow, and specify its Google bucket URL
here.

“GRCh38_ens93filt”, or
“gs://fc-e0000000-0000-0000-0000-
000000000000/rsem_ref.tar.gz”

aligner Which aligner to use for read alignment. Op-
tions are “hisat2-hca”, “star” and “bowtie”

“star” “hisat2-
hca”

smartseq2_versionSMART-Seq2 version to use. Versions avail-
able: 1.1.0.

“1.1.0” “1.1.0”

docker_registryDocker registry to use. Options:
• “cumulusprod” for Docker Hub images;
• “quay.io/cumulus” for backup images on

Red Hat registry.

“cumulusprod” “cumulusprod”

zones Google cloud zones “us-east1-d us-west1-a us-west1-b” “us-
central1-
a us-
central1-
b us-
central1-
c us-
central1-
f us-
east1-
b us-
east1-
c us-
east1-
d us-
west1-
a us-
west1-
b us-
west1-
c”

num_cpuNumber of cpus to request for one node 4 4
memoryMemory size string “3.60G” If

aligner
is
bowtie2
or
hisat2-
hca,
“3.6G”;
oth-
er-
wise
“32G”

disk_space_multiplierFactor to multiply size of R1 and R2 by for
RSEM

Float 11

generate_count_matrix_disk_spaceDisk space for count matrix generation task in
GB

Integer 10

preemptibleNumber of preemptible tries 2 2

13.6. Extract gene-count matrices from plated-based SMART-Seq2 data 65

https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references
https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references
./smart_seq_2.html#custom-genome
./smart_seq_2.html#custom-genome

Cumulus Documentation

Outputs:

Name Type Description
output_count_matrix Array[String] A list of google bucket urls containing gene-count ma-

trices, one per plate. Each gene-count matrix file has the
suffix .dge.txt.gz.

output_qc_report Array[String] A list of google bucket urls containing simple quality
control statistics, one per plate. Each file contains one
line per cell and each line has three columns: Total
reads, Alignment rate and Unique rate.

rsem_gene Array[Array[File]] A 2D array of RSEM gene expression estimation files.
rsem_gene Array[Array[File]] A 2D array of RSEM gene expression estimation files.
rsem_isoform Array[Array[File]] A 2D array of RSEM isoform expression estimation

files.
rsem_trans_bam Array[Array[File]] A 2D array of RSEM transcriptomic BAM files.
rsem_time Array[Array[File]] A 2D array of RSEM execution time log files.
aligner_log Array[Array[File]] A 2D array of Aligner log files.
rsem_cnt Array[Array[File]] A 2D array of RSEM count files.
rsem_model Array[Array[File]] A 2D array of RSEM model files.
rsem_theta Array[Array[File]] A 2D array of RSEM generated theta files.

This WDL generates one gene-count matrix per SMART-Seq2 plate. The gene-count matrix uses Drop-Seq format:

• The first line starts with "Gene" and then gives cell barcodes separated by tabs.

• Starting from the second line, each line describes one gene. The first item in the line is the gene name and the
rest items are TPM-normalized count values of this gene for each cell.

The gene-count matrices can be fed directly into cumulus for downstream analysis.

TPM-normalized counts are calculated as follows:

1. Estimate the gene expression levels in TPM using RSEM.

2. Suppose c reads are achieved for one cell, then calculate TPM-normalized count for gene i as TPM_i / 1e6

* c.

TPM-normalized counts reflect both the relative expression levels and the cell sequencing depth.

13.6.2 Custom Genome

We also provide a way of generating user-customized Genome references for SMART-Seq2 workflow.

1. Import smartseq2_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow. The smartseq2_create_reference workflow is
under Broad Methods Repository with name “cumulus/smartseq2_create_reference”.

Moreover, in the workflow page, click Export to Workflow... button, and select the
workspace to which you want to export smartseq2_create_reference in the drop-down
menu.

66 Chapter 13. Version 0.1.0 July 27, 2018

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

2. In your workspace, open smartseq2_create_reference in WORKFLOWS tab. Select Run workflow
with inputs defined by file paths as below

and click SAVE button.

Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

13.6. Extract gene-count matrices from plated-based SMART-Seq2 data 67

Cumulus Documentation

Name Description Type or Example Default
fasta Genome fasta file

File.
For example,
“gs://fc-e0000000-0000-0000-0000-
000000000000/Homo_sapiens.GRCh38.dna.primary_assembly.fa”

gtf GTF gene annotation file (e.g.
Homo_sapiens.GRCh38.83.gtf)

File.
For example,
“gs://fc-e0000000-0000-0000-0000-
000000000000/Homo_sapiens.GRCh38.83.gtf”

output_directoryGoogle bucket url for the output folder “gs://fc-e0000000-0000-0000-0000-
000000000000/output_refs”

genomeOutput reference genome name. Output
reference is a gzipped tarball with name
genome_aligner.tar.gz

“GRCm38_ens97filt”

aligner Build indices for which aligner, choices are
hisat2-hca, star, or bowtie2.

“hisat2-hca” “hisat2-
hca”

smartseq2_version

SMART-Seq2 version to use.
Versions available: 1.1.0.
Versions obsoleted: 1.0.0.

“1.1.0” “1.1.0”

docker_registryDocker registry to use. Options:
• “cumulusprod” for Docker Hub images;
• “quay.io/cumulus” for backup images on

Red Hat registry.

“quay.io/cumulus” “cumulusprod”

zones Google cloud zones “us-central1-c” “us-
central1-
b”

cpu Number of CPUs Integer If
aligner
is
bowtie2
or
hisat2-
hca,
8;
oth-
er-
wise
32

memoryMemory size string String If
aligner
is
bowtie2
or
hisat2-
hca,
“7.2G”;
oth-
er-
wise
“120G”

disk_spaceDisk space in GB Integer If
aligner
is
bowtie2
or
hisat2-
hca,
40;
oth-
er-
wise
120

preemptibleNumber of preemptible tries Integer 2

68 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Outputs

Name Type Description
output_reference File The custom Genome reference generated. Its default file

name is genome_aligner.tar.gz.
monitoring_log File CPU and memory profiling log.

13.7 Drop-seq pipeline

This workflow follows the steps outlined in the Drop-seq alignment cookbook from the McCarroll lab , except the de-
fault STAR aligner flags are –limitOutSJcollapsed 1000000 –twopassMode Basic. Additionally the pipeline provides
the option to generate count matrices using dropEst.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information
panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

13.7. Drop-seq pipeline 69

https://github.com/broadinstitute/Drop-seq/blob/master/doc/Drop-seq_Alignment_Cookbook.pdf
http://mccarrolllab.org/dropseq-1/
https://github.com/hms-dbmi/dropEst
https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel
free to change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil available by running:

reuse Google-Cloud-SDK

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket.
For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4
to a Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-
→˓0000-0000-000000000000/VK18WBC6Z4

-m means copy in parallel, -r means copy the directory recursively.

2. Non Broad Institute users that wish to run bcl2fastq must create a custom docker image.

See bcl2fastq instructions.

3. Create a sample sheet.

Please note that the columns in the CSV must be in the order shown below and does not contain a
header line. The sample sheet provides either the FASTQ files for each sample if you’ve already run
bcl2fastq or a list of BCL directories if you’re starting from BCL directories. Please note that BCL
directories must contain a valid bcl2fastq sample sheet (SampleSheet.csv):

Column Description
Name Sample name.
Read1 Location of the FASTQ file for read1 in the cloud (gsurl).
Read2 Location of the FASTQ file for read2 in the cloud (gsurl).

Example using FASTQ input files:

sample-1,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-1/sample1-1_
→˓L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓dropseq-1/sample-1_L001_R2_001.fastq.gz
sample-2,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-1/sample-2_
→˓L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓dropseq-1/sample-2_L001_R2_001.fastq.gz
sample-1,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-2/sample1-1_
→˓L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓dropseq-2/sample-1_L001_R2_001.fastq.gz

Note that in this example, sample-1 was sequenced across two flowcells.

Example using BCL input directories:

gs://fc-e0000000-0000-0000-0000-000000000000/flowcell-1
gs://fc-e0000000-0000-0000-0000-000000000000/flowcell-2

Note that the flow cell directory must contain a bcl2fastq sample sheet named SampleSheet.csv.

4. Upload your sample sheet to the workspace bucket.

Example:

70 Chapter 13. Version 0.1.0 July 27, 2018

https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-0000-
→˓0000-000000000000/

5. Import dropseq_workflow workflow to your workspace.

See the Terra documentation for adding a workflow. The dropseq_workflow is under Broad
Methods Repository with name “cumulus/dropseq_workflow”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace you want to export dropseq_workflow workflow in the drop-down menu.

6. In your workspace, open dropseq_workflow in WORKFLOWS tab. Select Run workflow with
inputs defined by file paths as below

and click the SAVE button.

13.7.1 Inputs

Please see the description of important inputs below.

13.7. Drop-seq pipeline 71

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

Name Description
input_csv_file CSV file containing sample name, read1, and read2 or a list of BCL directories.
output_directoryPipeline output directory (gs URL e.g. “gs://fc-e0000000-0000-0000-0000-

000000000000/dropseq_output”)
reference hg19, GRCh38, mm10, hg19_mm10, mmul_8.0.1 or a path to a custom reference JSON file
run_bcl2fastq Whether your sample sheet contains one BCL directory per line or one sample per line (default

false)
run_dropseq_toolsWhether to generate count matrixes using Drop-Seq tools from the McCarroll lab (default true)
run_dropest Whether to generate count matrixes using dropEst (default false)
cellular_barcode_whitelistOptional whitelist of known cellular barcodes
drop_seq_tools_force_cellsIf supplied, bypass the cell detection algorithm (the elbow method) and use this number of cells.
dropest_cells_maxMaximal number of output cells
dropest_genes_minMinimal number of genes for cells after the merge procedure (default 100)
dropest_min_merge_fractionThreshold for the merge procedure (default 0.2)
dropest_max_cb_merge_edit_distanceMax edit distance between barcodes (default 2)
dropest_max_umi_merge_edit_distanceMax edit distance between UMIs (default 1)
dropest_min_genes_before_mergeMinimal number of genes for cells before the merge procedure. Used mostly for optimization.

(default 10)
dropest_merge_barcodes_preciseUse precise merge strategy (can be slow), recommended to use when the list of real barcodes is

not available (default true)
dropest_velocytoSave separate count matrices for exons, introns and exon/intron spanning reads (default true)
trim_sequence The sequence to look for at the start of reads for trimming (default “AAGCAGTGGTAT-

CAACGCAGAGTGAATGGG”)
trim_num_basesHow many bases at the beginning of the sequence must match before trimming occur (default 5)
umi_base_range The base location of the molecular barcode (default 13-20)
cellular_barcode_base_rangeThe base location of the cell barcode (default 1-12)
star_flags Additional options to pass to STAR aligner

Please note that run_bcl2fastq must be set to true if you’re starting from BCL files instead of FASTQs.

Custom Genome JSON

If you’re reference is not one of the predefined choices, you can create a custom JSON file. Example:

{
"refflat": "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/

→˓hg19_mm10_transgenes.refFlat",
"genome_fasta": "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/

→˓hg19_mm10_transgenes.fasta",
"star_genome": "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/

→˓STAR2_5_index_hg19_mm10.tar.gz",
"gene_intervals": "gs://fc-e0000000-0000-0000-0000-000000000000/human_

→˓mouse/hg19_mm10_transgenes.genes.intervals",
"genome_dict": "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/

→˓hg19_mm10_transgenes.dict",
"star_cpus": 32,
"star_memory": "120G"

}

The fields star_cpus and star_memory are optional and are used as the default cpus and memory for running STAR
with your genome.

72 Chapter 13. Version 0.1.0 July 27, 2018

http://mccarrolllab.org/dropseq-1/
https://github.com/hms-dbmi/dropEst

Cumulus Documentation

13.7.2 Outputs

The pipeline outputs a list of google bucket urls containing one gene-count matrix per sample. Each gene-count matrix
file produced by Drop-seq tools has the suffix ‘dge.txt.gz’, matrices produced by dropEst have the extension .rds.

Building a Custom Genome

The tool dropseq_bundle can be used to build a custom genome. Please see the description of important inputs below.

Name Description
fasta_file Array of fasta files. If more than one species, fasta and gtf files must be in the same order.
gtf_file Array of gtf files. If more than one species, fasta and gtf files must be in the same order.
genomeSAindexNbasesLength (bases) of the SA pre-indexing string. Typically between 10 and 15. Longer strings will

use much more memory, but allow faster searches. For small genomes, must be scaled down to
min(14, log2(GenomeLength)/2 - 1)

dropseq_workflow Terra Release Notes

Version 9

• Changed input bcl2fastq_docker_registry from optional to required

Version 8

• Added additional parameters for bcl2fastq

Version 7

• Added support for multi-species genomes (Barnyard experiments)

Version 6

• Added star_extra_disk_space and star_disk_space_multiplier workflow inputs to adjust disk space allocated for
STAR alignment task.

Version 5

• Split preprocessing steps into separate tasks (FastqToSam, TagBam, FilterBam, and TrimBam).

Version 4

• Handle uncompressed fastq files as workflow input.

• Added optional prepare_fastq_disk_space_multiplier input.

Version 3

• Set default value for docker_registry input.

Version 2

• Added docker_registry input.

Version 1

• Renamed sccloud to cumulus

• Added use_bases_mask option when running bcl2fastq

Version 18

• Created a separate docker image for running bcl2fastq

13.7. Drop-seq pipeline 73

Cumulus Documentation

Version 17

• Fixed bug that ignored WDL input star_flags (thanks to Carly Ziegler for reporting)

• Changed default value of star_flags to the empty string (Prior versions of the WDL incorrectly indicated that
basic 2-pass mapping was done)

Version 16

• Use cumulus dockerhub organization

• Changed default dropEst version to 0.8.6

Version 15

• Added drop_deq_tools_prep_bam_memory and drop_deq_tools_dge_memory options

Version 14

• Fix for downloading files from user pays buckets

Version 13

• Set GCLOUD_PROJECT_ID for user pays buckets

Version 12

• Changed default dropEst memory from 52G to 104G

Version 11

• Updated formula for computing disk size for dropseq_count

Version 10

• Added option to specify merge_bam_alignment_memory and sort_bam_max_records_in_ram

Version 9

• Updated default drop_seq_tools_version from 2.2.0 to 2.3.0

Version 8

• Made additional options available for running dropEst

Version 7

• Changed default dropEst memory from 104G to 52G

Version 6

• Added option to run dropEst

Version 5

• Specify full version for bcl2fastq (2.20.0.422-2 instead of 2.20.0.422)

Version 4

• Fixed issue that prevented bcl2fastq from running

Version 3

• Set default run_bcl2fastq to false

• Create shortcuts for commonly used genomes

Version 2

• Updated QC report

74 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Version 1

• Initial release

dropseq_bundle Terra Release Notes

Version 4

• Added create_intervals_memory and extra_star_flags inputs

Version 3

• Added extra disk space inputs

• Fixed bug that prevented creating multi-genome bundles

Version 2

• Added docker_registry input

Version 1

• Renamed sccloud to cumulus

Version 1

• Changed docker organization

Version 1

• Initial release

13.8 Demultiplex cell-hashing/nuclei-hashing data using demuxEM
or prepare for CITE-Seq analysis

Follow the steps below to run cumulus for cell-hashing/nuclei-hashing/CITE-Seq data on Terra.

1. Run Cell Ranger tool to generate raw gene count matrices and antibody hashtag data.

Please refer to the cellranger_workflow tutorial for details.

When finished, you should be able to find the raw gene count matrix (e.g.
raw_gene_be_matrices_h5.h5) and ADT count matrix (e.g. sample_1_ADT.csv)
for each sample.

2. Create a sample sheet, sample_sheet_hashing.csv, which describes the metadata for each pair of RNA and
antibody hashtag data. The sample sheet should contain 4 columns — OUTNAME, RNA, ADT, and TYPE.
OUTNAME is the output name for one pair of RNA and ADT data. RNA and ADT are the raw gene count
matrix and the ADT count matrix generated in Step 1, respectively. TYPE is the assay type, which can be
cell-hashing, nuclei-hashing, or cite-seq.

Example:

OUTNAME,RNA,ADT,TYPE
sample_1,gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_1/raw_
→˓gene_bc_matrices_h5.h5,gs://fc-e0000000-0000-0000-0000-000000000000/my_
→˓dir/sample_1_ADT/sample_1_ADT.csv,cell-hashing
sample_2,gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_2/raw_
→˓feature_bc_matrices.h5,gs://fc-e0000000-0000-0000-0000-000000000000/my_
→˓dir/sample_2_ADT/sample_2_ADT.csv,nuclei-hashing

13.8. Demultiplex cell-hashing/nuclei-hashing data using demuxEM or prepare for CITE-Seq
analysis

75

https://app.terra.bio/
./cellranger.html

Cumulus Documentation

Note that in the example above, sample_2 is 10x genomics’ v3 chemistry. Cumulus can automatically
detect v2/v3 chemistry when loading hdf5 files.

3. (Optional) Create an additional antibody-control sheet antibody_control.csv if you have CITE-Seq data and
IgG controls for each antibody. This sheet contains 2 columns — Antibody and Control.

Example:

Antibody,Control
CD8,Mouse-IgG1
HLA-ABC,Mouse-IgG2a
CD45RA,Mouse-IgG2b

4. Upload your sample sheets to the Google bucket of your workspace.

Example:

gsutil cp /foo/bar/projects/my_sample_sheet_hashing.csv gs://fc-e0000000-
→˓0000-0000-0000-000000000000/
gsutil cp /foo/bar/projects/antibody_control.csv gs://fc-e0000000-0000-
→˓0000-0000-000000000000/

5. Import cumulus_hashing_cite_seq to your workspace.

See the Terra documentation for adding a workflow. The cumulus_hashing_cite_seq workflow is
under Broad Methods Repository with name “cumulus/cumulus_hashing_cite_seq”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export cumulus_hashing_cite_seq workflow in the drop-down menu.

6. In your workspace, open cumulus_hashing_cite_seq in WORKFLOWS tab. Select Run workflow
with inputs defined by file paths as below

and click the SAVE button.

76 Chapter 13. Version 0.1.0 July 27, 2018

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

13.8. Demultiplex cell-hashing/nuclei-hashing data using demuxEM or prepare for CITE-Seq
analysis

77

Cumulus Documentation

13.8.1 cumulus_hashing_cite_seq inputs:

Name Description Example Default
input_sample_sheetInput CSV file describing metadata of RNA and ADT

data pairing
“gs://fc-e0000000-
0000-0000-0000-
000000000000/sample_sheet_hashing.csv”

output_directoryThis is the output directory (gs url + path) for all results.
There will be one folder per RNA-ADT data pair under
this directory

“gs://fc-e0000000-
0000-0000-0000-
000000000000/my_demux_dir”

genome Reference genome name. If not provided, cumulus will
infer the genome name from data

“GRCh38”

demuxEM_min_num_genesdemuxEM parameter. Only demultiplex cells/nuclei
with at least <demuxEM_min_num_genes> expressed
genes

200 100

demuxEM_alpha_on_samplesdemuxEM parameter. The Dirichlet prior concentration
parameter (alpha) on samples. An alpha value < 1.0 will
make the prior sparse.

2.0 0.0

demuxEM_min_num_umisdemuxEM parameter. Only demultiplex cells/nuclei
with at least <demuxEM_min_num_umis> of UMIs.

200 100

demuxEM_min_signal_hashtagdemuxEM parameter. Any cell/nucleus with less than
<count> hashtags from the signal will be marked as un-
known. [default: 10.0]

10.0 10.0

demuxEM_random_statedemuxEM parameter. The random seed used in the
KMeans algorithm to separate empty ADT droplets
from others

0 0

demuxEM_generate_diagnostic_plotsdemuxEM parameter. If generate a series of diagnos-
tic plots, including the background/signal between HTO
counts, estimated background probabilities, HTO distri-
butions of cells and non-cells etc

true true

demuxEM_generate_gender_plotdemuxEM parameter. If generate violin plots us-
ing gender-specific genes (e.g. Xist). <de-
muxEM_generate_gender_plot> is a comma-separated
list of gene names

“XIST”

antibody_control_csvOptional merge_rna_adt parameter. If there is no IgG
control information, leave this option blank. Otherwise,
specify a CSV file containing the IgG control informa-
tion for each antibody.

“gs://fc-e0000000-
0000-0000-0000-
000000000000/antibody_control.csv”

cumulus_versioncumulus version to use. Versions available: 0.13.0,
0.12.0, 0.11.0, 0.10.0.

“0.13.0” “0.13.0”

docker_registryDocker registry to use. Options:
• “cumulusprod” for Docker Hub images;
• “quay.io/cumulus” for backup images on Red Hat

registry.

“cumulusprod” “cumulusprod”

zones Google cloud zones “us-east1-d us-west1-a us-
west1-b”

“us-
central1-
a us-
central1-
b us-
central1-
c us-
central1-f
us-east1-b
us-east1-c
us-east1-d
us-west1-a
us-west1-b
us-west1-
c”

num_cpu Number of CPUs per cumulus_hashing_cite_seq job 8 8
memory Memory size string “10G” “10G”
disk_space Total disk space in GB 20 20
preemptible Number of preemptible tries 2 2

78 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

13.8.2 cumulus_hashing_cite_seq outputs

See the table below for important cumulus_hashing_cite_seq outputs:

Name Type Description
output_folder Array[String] A list of google bucket urls containing results for every

RNA-ADT data pairs.

In the output folder of each cell-hashing/nuclei-hashing RNA-ADT data pair, you can find the following files:

Name Description
output_name_demux.h5ad Demultiplexed RNA count matrix in h5ad format.
output_name_demux.h5sc RNA expression matrix with demultiplexed sample identities in cumulus

hdf5 (h5sc) format.
output_name_ADTs.h5ad Antibody tag matrix in h5ad format.
output_name.ambient_hashtag.hist.pngOptional output. A histogram plot depicting hashtag distributions of empty

droplets and non-empty droplets.
output_name.background_probabilities.bar.pngOptional output. A bar plot visualizing the estimated hashtag background

probability distribution.
output_name.real_content.hist.png Optional output. A histogram plot depicting hashtag distributions of not-

real-cells and real-cells as defined by total number of expressed genes in
the RNA assay.

output_name.rna_demux.hist.png Optional output. A histogram plot depicting RNA UMI distribution for sin-
glets, doublets and unknown cells.

output_name.gene_name.violin.png Optional outputs. Violin plots depicting gender-specific gene expres-
sion across samples. We can have multiple plots if a gene list
is provided in demuxEM_generate_gender_plot field of cumu-
lus_hashing_cite_seq inputs.

In the output folder of each CITE-Seq RNA-ADT data pair, you can find the following file:

Name Description
output_name.h5sc A Cumulus hdf5 format (h5sc) file containing both RNA and ADT count

matrices.

13.8.3 Load demultiplexing results into Python and R

To load demultiplexing results into Python, you need to install Python package anndata first. Then follow the codes
below:

import anndata
data = anndata.read_h5ad('output_name_demux.h5ad')

Once you load the data object, you can find predicted droplet types (singlet/doublet/unknown) in data.
obs['demux_type']. You can find predicted sample assignments in data.obs['assignment']. You

13.8. Demultiplex cell-hashing/nuclei-hashing data using demuxEM or prepare for CITE-Seq
analysis

79

https://icb-anndata.readthedocs-hosted.com/en/stable/index.html

Cumulus Documentation

can find estimated sample fractions (sample1, sample2, . . . , samplen, background) for each droplet in data.
obsm['raw_probs'].

To load the results into R, you need to install R package reticulate in addition to Python package anndata.
Then follow the codes below:

library(reticulate)
ad <- import("anndata", convert = FALSE)
data <- ad$read_h5ad("output_name_demux.h5ad")

Results are in data$obs['demux_type'], data$obs['assignment'], and
data$obsm['raw_probs'].

13.9 Run Cumulus for sc/snRNA-Seq data analysis

13.9.1 Run Cumulus analysis

Prepare Input Data

Case One: Sample Sheet

Follow the steps below to run cumulus on Terra.

1. Create a sample sheet, count_matrix.csv, which describes the metadata for each sample count matrix. The
sample sheet should at least contain 2 columns — Sample and Location. Sample refers to sample names and
Location refers to the location of the channel-specific count matrix in either of

• 10x format with v2 chemistry. For example, gs://fc-e0000000-0000-0000-0000-000000000000/
my_dir/sample_1/filtered_gene_bc_matrices_h5.h5.

• 10x format with v3 chemistry. For example, gs://fc-e0000000-0000-0000-0000-000000000000/
my_dir/sample_1/filtered_feature_bc_matrices.h5.

• Drop-seq format. For example, gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/
sample_2/sample_2.umi.dge.txt.gz.

• Matrix Market format (mtx). If the input is mtx format, location should point to a mtx file with a file suffix
of either ‘.mtx’ or ‘.mtx.gz’. In addition, the associated barcode and gene tsv/txt files should be located in the
same folder as the mtx file. For example, if we generate mtx file using BUStools, we set Location to gs:/
/fc-e0000000-0000-0000-0000-000000000000/my_dir/mm10/cells_x_genes.mtx. We
expect to see cells_x_genes.barcodes.txt and cellx_x_genes.genes.txt under folder gs:/
/fc-e0000000-0000-0000-0000-000000000000/my_dir/mm10/. We support loading mtx files
in HCA DCP, 10x Genomics V2/V3, SCUMI, dropEST and BUStools format. Users can also set Location
to a folder gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/hg19_and_mm10/.
This folder must be generated by Cell Ranger for multi-species samples and we expect one subfolder per
species (e.g. ‘hg19’) and each subfolder should contain mtx file, barcode file, gene name file as generated
by Cell Ranger.

• csv format. If it is HCA DCP csv format, we expect the expression file has the name of expression.
csv. In addition, we expect that cells.csv and genes.csv files are located under the same folder
as the expression.csv. For example, gs://fc-e0000000-0000-0000-0000-000000000000/
my_dir/sample_3/.

• tsv or loom format.

80 Chapter 13. Version 0.1.0 July 27, 2018

https://app.terra.bio/

Cumulus Documentation

Additionally, an optional Reference column can be used to select samples generated from a same reference (e.g.
mm10). If the count matrix is in either DGE, mtx, csv, tsv, or loom format, the value in this column will be used
as the reference since the count matrix file does not contain reference name information. The only exception is mtx
format. If users do not provide a Reference column, we will use the basename of the folder containing the mtx file
as its reference. In addition, the Reference column can be used to aggregate count matrices generated from different
genome versions or gene annotations together under a unified reference. For example, if we have one matrix generated
from mm9 and the other one generated from mm10, we can write mm9_10 for these two matrices in their Reference
column. Pegasus will change their references to mm9_10 and use the union of gene symbols from the two matrices as
the gene symbols of the aggregated matrix. For HDF5 files (e.g. 10x v2/v3), the reference name contained in the file
does not need to match the value in this column. In fact, we use this column to rename references in HDF5 files. For
example, if we have two HDF files, one generated from mm9 and the other generated from mm10. We can set these two
files’ Reference column value to mm9_10, which will rename their reference names into mm9_10 and the aggregated
matrix will contain all genes from either mm9 or mm10. This renaming feature does not work if one HDF5 file contain
multiple references (e.g. mm10 and GRCh38).

You are free to add any other columns and these columns will be used in selecting channels for futher analysis. In
the example below, we have Source, which refers to the tissue of origin, Platform, which refers to the sequencing
platform, Donor, which refers to the donor ID, and Reference, which refers to the reference genome.

Example:

Sample,Source,Platform,Donor,Reference,Location
sample_1,bone_marrow,NextSeq,1,GRCh38,gs://fc-e0000000-0000-0000-0000-
→˓000000000000/my_dir/sample_1/filtered_gene_bc_matrices_h5.h5
sample_2,bone_marrow,NextSeq,2,GRCh38,gs://fc-e0000000-0000-0000-0000-
→˓000000000000/my_dir/sample_2/filtered_gene_bc_matrices_h5.h5
sample_3,pbmc,NextSeq,1,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓my_dir/sample_3/filtered_feature_bc_matrices.h5
sample_4,pbmc,NextSeq,2,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/
→˓my_dir/sample_4/filtered_feature_bc_matrices.h5

If you ran cellranger_workflow ahead, you should already obtain a template count_matrix.csv file that
you can modify from generate_count_config’s outputs.

1. Upload your sample sheet to the workspace.

Example:

gsutil cp /foo/bar/projects/my_count_matrix.csv gs://fc-e0000000-0000-
→˓0000-0000-000000000000/

where /foo/bar/projects/my_count_matrix.csv is the path to your sample sheet in lo-
cal machine, and gs://fc-e0000000-0000-0000-0000-000000000000/ is the location
on Google bucket to hold it.

2. Import cumulus workflow to your workspace.

See the Terra documentation for adding a workflow. The cumulus workflow is under Broad
Methods Repository with name “cumulus/cumulus”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export cumulus workflow in the drop-down menu.

3. In your workspace, open cumulus in WORKFLOWS tab. Select Run workflow with inputs defined
by file paths as below

13.9. Run Cumulus for sc/snRNA-Seq data analysis 81

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

and click the SAVE button.

Case Two: Single File

Alternatively, if you only have one single count matrix for analysis, you can go without sample sheets. Cumulus
currently supports the following formats:

• 10x genomics v2/v3 format (hdf5);

• Drop-seq dge format;

• csv (no HCA DCP format), tsv or loom formats.

Simply upload your data to the Google Bucket of your workspace, and specify its URL in input_file field of
Cumulus’ global inputs (see below). For hdf5 files, there is no need to specify genome names. For other formats, you
can specify genome name in considered_refs field in cluster inputs; otherwise, default name '' will be used.

In this case, the aggregate_matrices step will be skipped.

Case Three: Multiple samples without aggregation

Sometimes, you may want to run Cumulus on multiple samples simultaneously. This is different from Case one,
because samples are analyzed separately without aggregation.

1. To do it, you need to first create a data table on Terra. An example TSV file is the following:

entity:cumulus_test_id input_h5
5k_pbmc_v3 gs://fc-e0000000-0000-0000-0000-000000000000/5k_pbmc_v3/raw_feature_
→˓bc_matrix.h5
1k_pbmc_v3 gs://fc-e0000000-0000-0000-0000-000000000000/1k_pbmc_v3/raw_feature_
→˓bc_matrix.h5

You are free to add more columns, but sample ids and URLs to RNA count matrix files are required. I’ll use this
example TSV file for the rest of steps in this case.

1. Upload your TSV file to your workspace. Open the DATA tab on your workspace. Then click the upload button
on left TABLE panel, and select the TSV file above. When uploading is done, you’ll see a new data table with
name “cumulus_test”:

82 Chapter 13. Version 0.1.0 July 27, 2018

https://support.terra.bio/hc/en-us/articles/360025758392

Cumulus Documentation

2. Import cumulus workflow to your workspace as in Case one. Then open cumulus in WORKFLOW tab. Se-
lect Run workflow(s) with inputs defined by data table, and choose cumulus_test from
the drop-down menu.

3. In the input field, specify:

• input_file: Type this.input_h5, where this refers to the data table selected, and input_h5 is the
column name in this data table for RNA count matrices.

• output_directory: Type Google bucket URL for the main output folder. For example, gs://
fc-e0000000-0000-0000-0000-000000000000/cumulus_results.

• output_name: Type this.cumulus_test_id, where cumulus_test_id is the column name in data
table for sample ids.

An example is in the screen shot below:

Then finish setting up other inputs following the description in sections below. When you are done, click SAVE, and
then RUN ANALYSIS.

When all the jobs are done, you’ll find output for the 2 samples in subfolders gs://
fc-e0000000-0000-0000-0000-000000000000/cumulus_results/5k_pbmc_v3 and gs://
fc-e0000000-0000-0000-0000-000000000000/cumulus_results/1k_pbmc_v3, respectively.

Cumulus steps:

Cumulus processes single cell data in the following steps:

13.9. Run Cumulus for sc/snRNA-Seq data analysis 83

Cumulus Documentation

1. aggregate_matrices (optional). When given a CSV format sample sheet, this step aggregates channel-specific
count matrices into one big count matrix. Users can specify which channels they want to analyze and which
sample attributes they want to import to the count matrix in this step. Otherwise, if a single count matrix file is
given, skip this step.

2. cluster. This is the main analysis step. In this step, Cumulus performs low quality cell filtration, highly variable
gene selection, batch correction, dimension reduction, diffusion map calculation, graph-based clustering and 2D
visualization calculation (e.g. t-SNE/UMAP/FLE).

3. de_analysis. This step is optional. In this step, Cumulus can calculate potential markers for each cluster by
performing a variety of differential expression (DE) analysis. The available DE tests include Welch’s t test,
Fisher’s exact test, and Mann-Whitney U test. Cumulus can also calculate the area under ROC (AUROC)
curve values for putative markers. If find_markers_lightgbm is on, Cumulus will try to identify cluster-
specific markers by training a LightGBM classifier. If the samples are human or mouse immune cells, Cumulus
can also optionally annotate putative cell types for each cluster based on known markers.

4. plot. This step is optional. In this step, Cumulus can generate 6 types of figures based on the cluster step
results:

• composition plots which are bar plots showing the cell compositions (from different conditions) for each
cluster. This type of plots is useful to fast assess library quality and batch effects.

• tsne, fitsne, and net_tsne: t-SNE like plots based on different algorithms, respectively. Users can specify
cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.

• umap and net_umap: UMAP like plots based on different algorithms, respectively. Users can specify cell
attributes (e.g. cluster labels, conditions) for coloring side-by-side.

• fle and net_fle: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respec-
tively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.

• diffmap plots which are 3D interactive plots showing the diffusion maps. The 3 coordinates are the first 3
PCs of all diffusion components.

• If input is CITE-Seq data, there will be citeseq_fitsne plots which are FIt-SNE plots based on epitope
expression.

5. cirro_output. This step is optional. Generate Cirrocumulus inputs for visualization using Cirrocumulus .

6. scp_output. This step is optional. Generate analysis result in Single Cell Portal (SCP) compatible format.

7. organize_results. Copy analysis results from execution environment to destination location on Google bucket.
The output organization is as follows: one top-level output folder specified by output_directory in global
inputs; each sample has all it output files in a distinct subfolder, with name specified by output_name in
global inputs; within this subfolder, each file has a common filename prefix specified by output_name.

In the following sections, we will first introduce global inputs and then introduce the WDL inputs and outputs for each
step separately. But please note that you need to set inputs from all steps simultaneously in the Terra WDL.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.

84 Chapter 13. Version 0.1.0 July 27, 2018

https://cirrocumulus.readthedocs.io/en/latest/
https://cirrocumulus.readthedocs.io/en/latest/
https://portals.broadinstitute.org/single_cell
./cumulus.html#global-inputs
./cumulus.html#global-inputs
./cumulus.html#global-inputs

Cumulus Documentation

global inputs

Name Description Example Default
input_file Input CSV sample sheet describing metadata of each

10x channel, or a single input count matrix file
“gs://fc-e0000000-
0000-0000-0000-
000000000000/my_count_matrix.csv”

output_directoryGoogle bucket URL of the output directory. “gs://fc-e0000000-
0000-0000-0000-
000000000000/my_results_dir”

output_name This is the name of subdirectory for the current sample;
and all output files within the subdirectory will have this
string as the common filename prefix.

“my_sample”

cumulus_versioncumulus version to use. Versions available: 0.15.0,
0.13.0, 0.12.0, 0.11.0, 0.10.0.

“0.15.0” “0.15.0”

docker_registryDocker registry to use. Options:
• “cumulusprod” for Docker Hub images;
• “quay.io/cumulus” for backup images on Red Hat

registry.

“cumulusprod” “cumulusprod”

zones Google cloud zones to consider for execution. “us-east1-d us-west1-a us-
west1-b”

“us-
central1-
a us-
central1-
b us-
central1-
c us-
central1-f
us-east1-b
us-east1-c
us-east1-d
us-west1-a
us-west1-b
us-west1-
c”

num_cpu Number of CPUs per Cumulus job 32 64
memory Memory size string “200G” “200G”
disk_space Total disk space in GB 100 100
preemptible Number of preemptible tries 2 2

aggregate_matrices

13.9. Run Cumulus for sc/snRNA-Seq data analysis 85

Cumulus Documentation

aggregate_matrices inputs

Name Description Example Default
restrictions Select channels that satisfy all restrictions. Each restric-

tion takes the format of name:value,. . . ,value. Multiple
restrictions are separated by ‘;’

“Source:bone_marrow;Platform:NextSeq”

attributes Specify a comma-separated list of outputted attributes.
These attributes should be column names in the
count_matrix.csv file

“Source,Platform,Donor”

default_referenceIf sample count matrix is in either DGE, mtx, csv, tsv
or loom format and there is no Reference column in the
csv_file, use default_reference as the reference.

“GRCh38”

select_only_singletsIf we have demultiplexed data, turning on this option
will make cumulus only include barcodes that are pre-
dicted as singlets.

true false

minimum_number_of_genesOnly keep barcodes with at least this number of ex-
pressed genes

100 100

aggregate_matrices output

Name Type Description
output_h5sc File Aggregated count matrix in Cumulus hdf5 (h5sc) format

cluster

cluster inputs

Name Description Example Default
considered_refsA string contains comma-separated reference(e.g.

genome) names. Cumulus will read all groups associ-
ated with reference names in the list from the input file.
If considered_refs is None, all groups will be consid-
ered.

“mm10”

channel Specify the cell barcode attribute to represent different
samples.

“Donor”

black_list Cell barcode attributes in black list will be poped out.
Format is “attr1,attr2,. . . ,attrn”.

“attr1,attr2,attr3”“

min_genes_on_rawIf input are raw 10x matrix, which include all barcodes,
perform a pre-filtration step to keep the data size small.
In the pre-filtration step, only keep cells with at least
<min_genes_on_raw> of genes

100 100

Continued on next page

86 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Table 1 – continued from previous page
Name Description Example Default
cite_seq

Data are CITE-Seq data. cumulus will perform
analyses on RNA count matrix first.
Then it will attach the ADT matrix to the RNA matrix
with all antibody names changing to ‘AD-‘ +
antibody_name.
Lastly, it will embed the antibody expression using
FIt-SNE (the basis used for plotting is ‘citeseq_fitsne’)

false false

cite_seq_cappingFor CITE-Seq surface protein expression, make all cells
with expression > <percentile> to the value at <per-
centile> to smooth outlier. Set <percentile> to 100.0
to turn this option off.

10.0 99.99

select_only_singletsIf we have demultiplexed data, turning on this option
will make cumulus only include barcodes that are pre-
dicted as singlets

false false

remap_singlets
For demultiplexed data, user can remap singlet names
using assignment in String in this input. This string
assignment takes the format
“new_name_i:old_name_1,old_name_2;new_name_ii:old_name_3;. . . ”.
For example, if we hashed 5 libraries from 3 samples:
sample1_lib1, sample1_lib2; sample2_lib1,
sample2_lib2; sample3, we can remap them to 3
samples using this string:
"sample1:sample1_lib1,sample1_lib2;
sample2:sample2_lib1,sample2_lib2".
In this way, the new singlet names will be in metadata
field with key assignment, while the old names are
kept in metadata with key assignment.orig.

“Group1:CB1,CB2;Group2:CB3,CB4,CB5”

subset_singlets
For demultiplexed data, user can use this input to
choose a subset of singlets based on their names. This
string takes the format “name1,name2,. . . ”.
Note that if remap_singlets is specified,
subsetting happens after remapping, i.e. you should use
the new singlet names for choosing subset.

“Group2,CB6,CB7”

output_filtration_resultsIf write cell and gene filtration results to a spreadsheet true true
plot_filtration_resultsIf plot filtration results as PDF files true true
plot_filtration_figsizeFigure size for filtration plots. <figsize> is a comma-

separated list of two numbers, the width and height of
the figure (e.g. 6,4)

6,4

output_seurat_compatibleGenerate Seurat-compatible h5ad file. Caution: File
size might be large, do not turn this option on for large
data sets.

false false

output_loom If generate loom-formatted file false false
min_genes Only keep cells with at least <min_genes> of genes 500 500
max_genes Only keep cells with less than <max_genes> of genes 6000 6000

Continued on next page

13.9. Run Cumulus for sc/snRNA-Seq data analysis 87

Cumulus Documentation

Table 1 – continued from previous page
Name Description Example Default
min_umis Only keep cells with at least <min_umis> of UMIs 100 100
max_umis Only keep cells with less than <max_umis> of UMIs 600000 600000
mito_prefix Prefix of mitochondrial gene names. This is to identify

mitochondrial genes.
“mt-“ “MT-“

percent_mito Only keep cells with mitochondrial ratio less than <per-
cent_mito>% of total counts

50 10.0

gene_percent_cellsOnly use genes that are expressed in at
<gene_percent_cells>% of cells to select variable
genes

50 0.05

counts_per_cell_afterTotal counts per cell after normalization, before trans-
forming the count matrix into Log space.

1e5 1e5

select_hvf_flavorHighly variable feature selection method. Options:
• “pegasus”: New selection method proposed in

Pegasus, the analysis module of Cumulus work-
flow.

• “Seurat”: Conventional selection method used by
Seurat and SCANPY.

“pegasus” “pegasus”

select_hvf_ngenesSelect top <select_hvf_ngenes> highly variable fea-
tures. If <select_hvf_flavor> is “Seurat” and <se-
lect_hvf_ngenes> is “None”, select HVGs with z-score
cutoff at 0.5.

2000 2000

no_select_hvf Do not select highly variable features. false false
correct_batch_effectIf correct batch effects false false
correction_methodBatch correction method. Options:

• “harmony”: Harmony algorithm (Korsunsky et al.
Nature Methods 2019).

• “L/S”: Location/Scale adjustment algorithm (Li
and Wong. The analysis of Gene Expression
Data, 2003).

“harmony” “harmony”

Continued on next page

88 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Table 1 – continued from previous page
Name Description Example Default
batch_group_by

Batch correction assumes the differences in gene
expression between channels are due to batch effects.
However, in many cases, we know that channels can be
partitioned into several groups and each group is
biologically different from others.
In this case, we will only perform batch correction for
channels within each group. This option defines the
groups.
If <expression> is None, we assume all channels are
from one group. Otherwise, groups are defined
according to <expression>.
<expression> takes the form of either ‘attr’, or
‘attr1+attr2+. . . +attrn’, or
‘attr=value11,. . . ,value1n_1;value21,. . . ,value2n_2;. . . ;valuem1,. . . ,valuemn_m’.
In the first form, ‘attr’ should be an existing sample
attribute, and groups are defined by ‘attr’.
In the second form, ‘attr1’,. . . ,’attrn’ are n existing
sample attributes and groups are defined by the
Cartesian product of these n attributes.
In the last form, there will be m + 1 groups.
A cell belongs to group i (i > 0) if and only if its sample
attribute ‘attr’ has a value among valuei1,. . . ,valuein_i.
A cell belongs to group 0 if it does not belong to any
other groups

“Donor” None

random_state Random number generator seed 0 0
nPC Number of principal components 50 50
knn_K Number of nearest neighbors used for constructing

affinity matrix.
50 100

knn_full_speedFor the sake of reproducibility, we only run one thread
for building kNN indices. Turn on this option will allow
multiple threads to be used for index building. How-
ever, it will also reduce reproducibility due to the racing
between multiple threads.

false false

run_diffmap Whether to calculate diffusion map or not. It will
be automatically set to true when input run_fle or
run_net_fle is set.

false false

diffmap_ndc Number of diffusion components 100 100
diffmap_maxt Maximum time stamp in diffusion map computation to

search for the knee point.
5000 5000

run_louvain Run Louvain clustering algorithm true true
louvain_resolutionResolution parameter for the Louvain clustering algo-

rithm
1.3 1.3

louvain_class_labelLouvain cluster label name in analysis result. “louvain_labels” “louvain_labels”
run_leiden Run Leiden clustering algorithm. false false
leiden_resolutionResolution parameter for the Leiden clustering algo-

rithm.
1.3 1.3

Continued on next page

13.9. Run Cumulus for sc/snRNA-Seq data analysis 89

Cumulus Documentation

Table 1 – continued from previous page
Name Description Example Default
leiden_niter Number of iterations of running the Leiden algorithm. If

negative, run Leiden iteratively until no improvement.
2 -1

leiden_class_labelLeiden cluster label name in analysis result. “leiden_labels” “leiden_labels”
run_spectral_louvainRun Spectral Louvain clustering algorithm false false
spectral_louvain_basisBasis used for KMeans clustering. Use diffusion map

by default. If diffusion map is not calculated, use PCA
coordinates. Users can also specify “pca” to directly use
PCA coordinates.

“diffmap” “diffmap”

spectral_louvain_resolutionResolution parameter for louvain. 1.3 1.3
spectral_louvain_class_labelSpectral louvain label name in analysis result. “spectral_louvain_labels” “spectral_louvain_labels”
run_spectral_leidenRun Spectral Leiden clustering algorithm. false false
spectral_leiden_basisBasis used for KMeans clustering. Use diffusion map

by default. If diffusion map is not calculated, use PCA
coordinates. Users can also specify “pca” to directly use
PCA coordinates.

“diffmap” “diffmap”

spectral_leiden_resolutionResolution parameter for leiden. 1.3 1.3
spectral_leiden_class_labelSpectral leiden label name in analysis result. “spectral_leiden_labels” “spectral_leiden_labels”
run_tsne Run multi-core t-SNE for visualization false false
tsne_perplexityt-SNE’s perplexity parameter, also used by FIt-SNE. 30 30
run_fitsne Run FIt-SNE for visualization true true
run_umap Run UMAP for visualization false false
umap_K K neighbors for UMAP. 15 15
umap_min_distUMAP parameter. 0.5 0.5
umap_spread UMAP parameter. 1.0 1.0
run_fle Run force-directed layout embedding (FLE) for visual-

ization
false false

fle_K Number of neighbors for building graph for FLE 50 50
fle_target_change_per_nodeTarget change per node to stop FLE. 2.0 2.0
fle_target_stepsMaximum number of iterations before stopping the al-

goritm
5000 5000

net_down_sample_fractionDown sampling fraction for net-related visualization 0.1 0.1
run_net_tsne Run Net tSNE for visualization false false
net_tsne_out_basisBasis name for Net t-SNE coordinates in analysis result “net_tsne” “net_tsne”
run_net_umapRun Net UMAP for visualization false false
net_umap_out_basisBasis name for Net UMAP coordinates in analysis result “net_umap” “net_umap”
run_net_fle Run Net FLE for visualization false false
net_fle_out_basisBasis name for Net FLE coordinates in analysis result. “net_fle” “net_fle”

90 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

cluster outputs

Name Type Description
output_h5ad File

Output file in h5ad format (output_name.h5ad).
To load this file in Python, you need to first install Pegasus on your local
machine. Then use import pegasus as pg; data =
pg.read_input('output_name.h5ad') in Python environment.
The log-normalized expression matrix is stored in data.X as a Scipy
CSR-format sparse matrix, with cell-by-gene shape.
The obs field contains cell related attributes, including clustering results.
For example, data.obs_names records cell barcodes;
data.obs['Channel'] records the channel each cell comes from;
data.obs['n_genes'], data.obs['n_counts'], and
data.obs['percent_mito'] record the number of expressed genes,
total UMI count, and mitochondrial rate for each cell respectively;
data.obs['louvain_labels'],
data.obs['leiden_labels'],
data.obs['spectral_louvain_labels'], and
data.obs['spectral_leiden_labels'] record each cell’s
cluster labels using different clustering algorithms;
The var field contains gene related attributes.
For example, data.var_names records gene symbols,
data.var['gene_ids'] records Ensembl gene IDs, and
data.var['highly_variable_features'] records selected
variable genes.
The obsm field records embedding coordinates.
For example, data.obsm['X_pca'] records PCA coordinates,
data.obsm['X_tsne'] records t-SNE coordinates,
data.obsm['X_umap'] records UMAP coordinates,
data.obsm['X_diffmap'] records diffusion map coordinates,
data.obsm['X_diffmap_pca'] records the first 3 PCs by
projecting the diffusion components using PCA,
and data.obsm['X_fle'] records the force-directed layout
coordinates from the diffusion components.
The uns field stores other related information, such as reference genome
(data.uns['genome']), kNN on PCA coordinates
(data.uns['pca_knn_indices'] and
data.uns['pca_knn_distances']), etc.

output_log File This is a copy of the logging module output, containing important interme-
diate messages

output_seurat_h5adFile

Output file in Seurat-compatible h5ad format (output_name.seurat.h5ad).
To load this file in Python, first install Pegasus on your local machine.
Then use import pegasus as pg; data =
pg.read_input('output_name.seurat.h5ad') in Python
environment.
After loading, data has the similar structure as in Description of
output_h5ad in cluster outputs section.
In addition, data.raw.X records filtered raw count matrix as a Scipy
CSR-format sparse matrix, with cell-by-gene shape.
data.uns['scale.data'] records variable-gene-selected and
standardized expression matrix which are ready to perform PCA, and
data.uns['scale.data.rownames'] records indexes of the
selected highly variable genes.
This file is used for loading in R and converting into a Seurat object (see
here for instructions)

output_filt_xlsx File

Spreadsheet containing filtration results (output_name.filt.xlsx).
This file has two sheets — Cell filtration stats and Gene filtration stats.
The first sheet records cell filtering results and it has 10 columns:
Channel, channel name; kept, number of cells kept; median_n_genes,
median number of expressed genes in kept cells; median_n_umis, median
number of UMIs in kept cells;
median_percent_mito, median mitochondrial rate as UMIs between
mitochondrial genes and all genes in kept cells;
filt, number of cells filtered out; total, total number of cells before
filtration, if the input contain all barcodes, this number is the cells left after
‘min_genes_on_raw’ filtration;
median_n_genes_before, median expressed genes per cell before filtration;
median_n_umis_before, median UMIs per cell before filtration;
median_percent_mito_before, median mitochondrial rate per cell before
filtration.
The channels are sorted in ascending order with respect to the number of
kept cells per channel.
The second sheet records genes that failed to pass the filtering.
This sheet has 3 columns: gene, gene name; n_cells, number of cells this
gene is expressed; percent_cells, the fraction of cells this gene is expressed.
Genes are ranked in ascending order according to number of cells the gene
is expressed.
Note that only genes not expressed in any cell are removed from the data.
Other filtered genes are marked as non-robust and not used for TPM-like
normalization

output_filt_plot Array[File]

If not empty, this array contains 3 PDF files.
output_name.filt.gene.pdf, which contains violin plots contrasting gene
count distributions before and after filtration per channel.
output_name.filt.UMI.pdf, which contains violin plots contrasting UMI
count distributions before and after filtration per channel.
output_name.filt.mito.pdf, which contains violin plots contrasting
mitochondrial rate distributions before and after filtration per channel

output_loom_file File

Output file in loom format (output_name.loom).
To load this file in Python, first install loompy. Then type from loompy
import connect; ds = connect('output_name.loom') in
Python environment.
The log-normalized expression matrix is stored in ds with gene-by-cell
shape. ds[:, :] returns the matrix in dense format;
ds.layers[''].sparse() returns it as a Scipy COOrdinate sparse
matrix.
The ca field contains cell related attributes as row attributes, including
clustering results and cell embedding coordinates.
For example, ds.ca['obs_names'] records cell barcodes;
ds.ca['Channel'] records the channel each cell comes from;
ds.ca['louvain_labels'], ds.ca['leiden_labels'],
ds.ca['spectral_louvain_labels'], and
ds.ca['spectral_leiden_labels'] record each cell’s cluster
labels using different clustering algorithms;
ds.ca['X_pca'] records PCA coordinates, ds.ca['X_tsne']
records t-SNE coordinates,
ds.ca['X_umap'] records UMAP coordinates,
ds.ca['X_diffmap'] records diffusion map coordinates,
ds.ca['X_diffmap_pca'] records the first 3 PCs by projecting the
diffusion components using PCA,
and ds.ca['X_fle'] records the force-directed layout coordinates
from the diffusion components.
The ra field contains gene related attributes as column attributes.
For example, ds.ra['var_names'] records gene symbols,
ds.ra['gene_ids'] records Ensembl gene IDs, and
ds.ra['highly_variable_features'] records selected variable
genes.

13.9. Run Cumulus for sc/snRNA-Seq data analysis 91

https://pegasus.readthedocs.io/en/latest/installation.html
https://pegasus.readthedocs.io/en/latest/installation.html
./cumulus.html#cluster-outputs
./cumulus.html#load-h5ad-file-into-seurat
http://linnarssonlab.org/loompy/installation/index.html

Cumulus Documentation

de_analysis

de_analysis inputs

Name Description Example Default
perform_de_analysisIf perform differential expression (DE) analysis true true
cluster_labels Specify the cluster label used for DE analysis “louvain_labels” “louvain_labels”
alpha Control false discovery rate at <alpha> 0.05 0.05
auc Calculate area under ROC (AUROC) true true
fisher Calculate Fisher’s exact test true true
t_test Calculate Welch’s t-test. true true
mwu Calculate Mann-Whitney U test false false
find_markers_lightgbmIf also detect markers using LightGBM false false
remove_ribo Remove ribosomal genes with either RPL or RPS as

prefixes. Currently only works for human data
false false

min_gain Only report genes with a feature importance score (in
gain) of at least <gain>

1.0 1.0

annotate_clusterIf also annotate cell types for clusters based on DE re-
sults

false false

annotate_de_testDifferential Expression test to use for inference on cell
types. Options: “t”, “fisher”, or “mwu”

“t” “t”

organism Organism, could either be “human_immune”,
“mouse_immune”, “human_brain”, “mouse_brain”
or a Google bucket link to a JSON file describing the
markers

“mouse_brain” “human_immune”

minimum_report_scoreMinimum cell type score to report a potential cell type 0.5 0.5

92 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

de_analysis outputs

Name Type Description
output_de_h5ad File

h5ad-formatted results with DE results updated (output_name.h5ad).
To load this file in Python, you need to first install Pegasus on your local
machine. Then type import pegasus as pg; data =
pg.read_input('output_name.h5ad') in Python environment.
After loading, data has the similar structure as in Description of
output_h5ad in cluster outputs section.
Besides, there is one additional field varm which records DE analysis
results in data.varm['de_res']. You can use Pandas DataFrame to
convert it into a reader-friendly structure: import pandas as pd;
df = pd.DataFrame(data.varm['de_res'], index =
data.var_names). Then in the resulting data frame, genes are rows,
and those DE test statistics are columns.
DE analysis in cumulus is performed on each cluster against cells in all the
other clusters. For instance, in the data frame, column
mean_logExpr:1 refers to the mean expression of genes in log-scale
for cells in Cluster 1. The number after colon refers to the cluster label to
which this statistic belongs.

output_de_xlsx File

Spreadsheet reporting DE results (output_name.de.xlsx)
Each cluster has two tabs: one for up-regulated genes for this cluster, one
for down-regulated ones. In each tab, genes are ranked by AUROC and
WAD scores.
Genes which are not significant in terms of q-values in any of the DE test
are not included (at false discovery rate specified in alpha field of
de_analysis inputs).

output_markers_xlsxFile An excel spreadsheet containing detected markers. Each cluster has one
tab in the spreadsheet and each tab has three columns, listing markers that
are strongly up-regulated, weakly up-regulated and down-regulated (out-
put_name.markers.xlsx)

output_anno_file File Annotation file (output_name.anno.txt)

How cell type annotation works

In this subsection, we will describe the format of input JSON cell type marker file, the ad hoc cell type inference
algorithm, and the format of the output putative cell type file.

JSON file

The top level of the JSON file is an object with two name/value pairs:

• title: A string to describe what this JSON file is for (e.g. “Mouse brain cell markers”).

13.9. Run Cumulus for sc/snRNA-Seq data analysis 93

https://pegasus.readthedocs.io/en/latest/installation.html
./cumulus.html#cluster-outputs
./cumulus.html#de-analysis-inputs

Cumulus Documentation

• cell_types: List of all cell types this JSON file defines. In this list, each cell type is described using a separate
object with 2 to 3 name/value pairs:

– name: Cell type name (e.g. “GABAergic neuron”).

– markers: List of gene-marker describing objects, each of which has 2 name/value pairs:

* genes: List of positive and negative gene markers (e.g. ["Rbfox3+", "Flt1-"]).

* weight: A real number between 0.0 and 1.0 to describe how much we trust the markers
in genes.

All markers in genes share the weight evenly. For instance, if we have 4 markers and the weight is
0.1, each marker has a weight of 0.1 / 4 = 0.025.

The weights from all gene-marker describing objects of the same cell type should sum up to 1.0.

– subtypes: Description on cell subtypes for the cell type. It has the same structure as the top level
JSON object.

See below for an example JSON snippet:

{
"title" : "Mouse brain cell markers",
"cell_types" : [

{
"name" : "Glutamatergic neuron",
"markers" : [
{

"genes" : ["Rbfox3+", "Reln+", "Slc17a6+", "Slc17a7+"],
"weight" : 1.0

}
],
"subtypes" : {
"title" : "Glutamatergic neuron subtype markers",

"cell_types" : [
{
"name" : "Glutamatergic layer 4",
"markers" : [
{
"genes" : ["Rorb+", "Paqr8+"],
"weight" : 1.0

}
]

}
]

}
}

]
}

Inference Algorithm

We have already calculated the up-regulated and down-regulated genes for each cluster in the differential expression
analysis step.

First, load gene markers for each cell type from the JSON file specified, and exclude marker genes, along with their
associated weights, that are not expressed in the data.

94 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

Then scan each cluster to determine its putative cell types. For each cluster and putative cell type, we calculate a score
between 0 and 1, which describes how likely cells from the cluster are of this cell type. The higher the score is, the
more likely cells are from the cell type.

To calculate the score, each marker is initialized with a maximum impact value (which is 2). Then do case analysis as
follows:

• For a positive marker:

– If it is not up-regulated, its impact value is set to 0.

– Otherwise, if it is up-regulated:

* If it additionally has a fold change in percentage of cells expressing this marker (within cluster vs.
out of cluster) no less than 1.5, it has an impact value of 2 and is recorded as a strong supporting
marker.

* If its fold change (fc) is less than 1.5, this marker has an impact value of 1 + (fc - 1) / 0.5
and is recorded as a weak supporting marker.

• For a negative marker:

– If it is up-regulated, its impact value is set to 0.

– If it is neither up-regulated nor down-regulated, its impact value is set to 1.

– Otherwise, if it is down-regulated:

* If it additionally has 1 / fc (where fc is its fold change) no less than 1.5, it has an impact value
of 2 and is recorded as a strong supporting marker.

* If 1 / fc is less than 1.5, it has an impact value of 1 + (1 / fc - 1) / 0.5 and is recorded
as a weak supporting marker.

The score is calculated as the weighted sum of impact values weighted over the sum of weights multiplied by 2 from
all expressed markers. If the score is larger than 0.5 and the cell type has cell subtypes, each cell subtype will also be
evaluated.

Output annotation file

For each cluster, putative cell types with scores larger than minimum_report_score will be reported in descend-
ing order with respect to their scores. The report of each putative cell type contains the following fields:

• name: Cell type name.

• score: Score of cell type.

• average marker percentage: Average percentage of cells expressing marker within the cluster between all
positive supporting markers.

• strong support: List of strong supporting markers. Each marker is represented by a tuple of its name and
percentage of cells expressing it within the cluster.

• weak support: List of week supporting markers. It has the same structure as strong support.

13.9. Run Cumulus for sc/snRNA-Seq data analysis 95

Cumulus Documentation

plot

The h5ad file contains a default cell attribute Channel, which records which channel each that single cell comes
from. If the input is a CSV format sample sheet, Channel attribute matches the Sample column in the sample
sheet. Otherwise, it’s specified in channel field of the cluster inputs.

Other cell attributes used in plot must be added via attributes field in the aggregate_matrices inputs.

96 Chapter 13. Version 0.1.0 July 27, 2018

Cumulus Documentation

plot inputs

Name Description Example Default
plot_composition

Takes the format of “label:attr,label:attr,. . . ,label:attr”.
If non-empty, generate composition plot for each
“label:attr” pair.
“label” refers to cluster labels and “attr” refers to
sample conditions

“louvain_labels:Donor” None

plot_fitsne

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored FIt-SNEs side by side

“louvain_labels,Donor” None

plot_tsne

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored t-SNEs side by side

“louvain_labels,Channel” None

plot_umap

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored UMAP side by side

“louvain_labels,Donor” None

plot_fle

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored FLE (force-directed
layout embedding) side by side

“louvain_labels,Donor” None

plot_diffmap

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, generate attr colored 3D interactive plot.
The 3 coordinates are the first 3 PCs of all diffusion
components

“louvain_labels,Donor” None

plot_citeseq_fitsne

plot cells based on FIt-SNE coordinates estimated from
antibody expressions.
Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored FIt-SNEs side by side

“louvain_labels,Donor” None

plot_net_tsne

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored t-SNEs side by side
based on net t-SNE result.

“leiden_labels,Channel” None

plot_net_umap

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored UMAP side by side
based on net UMAP result.

“leiden_labels,Donor” None

plot_net_fle

Takes the format of “attr,attr,. . . ,attr”.
If non-empty, plot attr colored FLE (force-directed
layout embedding) side by side
based on net FLE result.

“leiden_labels,Donor” None

13.9. Run Cumulus for sc/snRNA-Seq data analysis 97

Cumulus Documentation

plot outputs

Name Type Description
output_pdfs Array[File] Outputted pdf files
output_htmls Array[File] Outputted html files

Generate input files for Cirrocumulus

Generate Cirrocumulus inputs for visualization using Cirrocumulus .

cirro_output inputs

Name Description Example Default
generate_cirro_inputsWhether to generate input files for Cirrocumulus false false

cirro_output outputs

Name Type Description
output_cirro_path Google Bucket

URL
Path to Cirrocumulus inputs

Generate SCP-compatible output files

Generate analysis result in Single Cell Portal (SCP) compatible format.

scp_output inputs

Name Description Example Default
generate_scp_outputsWhether to generate SCP format output or not. false false
output_dense Output dense expression matrix, instead of the default

sparse matrix format.
false false

scp_output outputs

Name Type Description
output_scp_files Array[File] Outputted SCP format files.

98 Chapter 13. Version 0.1.0 July 27, 2018

https://cirrocumulus.readthedocs.io/en/latest/
https://cirrocumulus.readthedocs.io/en/latest/
https://portals.broadinstitute.org/single_cell

Cumulus Documentation

13.9.2 Run CITE-Seq analysis

To run CITE-Seq analysis, turn on cite_seq option in cluster inputs of cumulus workflow.

An embedding of epitope expressions via FIt-SNE is available at basis X_citeseq_fitsne.

To plot this epitope embedding, specify attributes to plot in plot_citeseq_fitsne field of cluster inputs.

13.9.3 Run subcluster analysis

Once we have cumulus outputs, we could further analyze a subset of cells by running cumulus_subcluster. To run
cumulus_subcluster, follow the following steps:

1. Import cumulus_subcluster method.

See the Terra documentation for adding a workflow. The cumulus workflow is under Broad
Methods Repository with name “cumulus/cumulus_subcluster”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the
workspace to which you want to export cumulus workflow in the drop-down menu.

2. In your workspace, open cumulus_subcluster in WORKFLOWS tab. Select Run workflow with
inputs defined by file paths as below

and click the SAVE button.

cumulus_subcluster steps:

cumulus_subcluster processes the subset of single cells in the following steps:

1. subcluster. In this step, cumulus_subcluster first select the subset of cells from cumulus outputs according
to user-provided criteria. It then performs batch correction, dimension reduction, diffusion map calculation,
graph-based clustering and 2D visualization calculation (e.g. t-SNE/UMAP/FLE).

2. de_analysis (optional). In this step, cumulus_subcluster calculates potential markers for each cluster by per-
forming a variety of differential expression (DE) analysis. The available DE tests include Welch’s t test, Fisher’s
exact test, and Mann-Whitney U test. cumulus_subcluster can also calculate the area under ROC curve (AU-
ROC) values for putative markers. If the samples are human or mouse immune cells, cumulus_subcluster can
optionally annotate putative cell types for each cluster based on known markers.

3. plot (optional). In this step, cumulus_subcluster can generate the following 5 types of figures based on the
subcluster step results:

• composition plots which are bar plots showing the cell compositions (from different conditions) for each
cluster. This type of plots is useful to fast assess library quality and batch effects.

• tsne, fitsne, and net_tsne: t-SNE like plots based on different algorithms, respectively. Users can specify
different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.

• umap and net_umap: UMAP like plots based on different algorithms, respectively. Users can specify
different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.

13.9. Run Cumulus for sc/snRNA-Seq data analysis 99

https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

• fle and net_fle: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respec-
tively. Users can specify different cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.

• diffmap plots which are 3D interactive plots showing the diffusion maps. The 3 coordinates are the first 3
PCs of all diffusion components.

cumulus_subcluster’s inputs

cumulus_subcluster shares many inputs/outputs with cumulus, we will only cover inputs/outputs that are specific to
cumulus_subcluster in this section.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.

Name Description Example Default
input_h5ad Google bucket URL of input h5ad file containing cumu-

lus results
“gs://fc-e0000000-
0000-0000-0000-
000000000000/my_results_dir/my_results.h5ad”

output_name This is the prefix for all output files. It should contain
the Google bucket URL, subdirectory name and output
name prefix

“gs://fc-e0000000-
0000-0000-0000-
000000000000/my_results_dir/my_results_sub”

subset_selections

Specify which cells will be included in the subcluster
analysis.
This field contains one or more <subset_selection>
strings separated by ‘;’.
Each <subset_selection> string takes the format of
‘attr:value,. . . ,value’, which means select cells with attr
in the values.
If multiple <subset_selection> strings are specified, the
subset of cells selected is the intersection of these
strings

“louvain_labels:3,6”
or “lou-
vain_labels:3,6;Donor:1,2”

calculate_pseudotimeCalculate diffusion-based pseudotimes based on
<roots>. <roots> should be a comma-separated list of
cell barcodes

“sample_1-
ACCCGGGTTT-
1,sample_1-
TCCCGGGAAA-2”

None

num_cpu Number of cpus per cumulus job 32 64
memory Memory size string “200G” “200G”
disk_space Total disk space in GB 100 100
preemptible Number of preemptible tries 2 2

For other cumulus_subcluster inputs, please refer to cumulus cluster inputs list for details. Notice that some inputs
(as listed below) in cumulus cluster inputs list are DISABLED for cumulus_subcluster:

• cite_seq

• cite_seq_capping

• output_filtration_results

• plot_filtration_results

• plot_filtration_figsize

• output_seurat_compatible

100 Chapter 13. Version 0.1.0 July 27, 2018

./cumulus.html#cluster

Cumulus Documentation

• batch_group_by

• min_genes

• max_genes

• min_umis

• max_umis

• mito_prefix

• percent_mito

• gene_percent_cells

• min_genes_on_raw

• counts_per_cell_after

cumulus_subcluster’s outputs

Name Type Description
output_h5ad File

h5ad-formatted HDF5 file containing all results (output_name.h5ad).
If perform_de_analysis is on, this file should be the same as
output_de_h5ad.
To load this file in Python, it’s similar as in cumulus cluster outputs section.
Besides, for subcluster results, there is a new cell attributes in
data.obs['pseudo_time'], which records the inferred pseudotime
for each cell.

output_log File This is a copy of the logging module output, containing important interme-
diate messages

output_loom_file File Generated loom file (output_name.loom)
output_de_h5ad File Generated h5ad-formatted results with DE results updated (out-

put_name.h5ad)
output_de_xlsx File Generated Spreadsheet reporting DE results (output_name.de.xlsx)
output_pdfs Array[File] Generated pdf files
output_htmls Array[File] Generated html files

13.9.4 Load Cumulus results into Pegasus

Pegasus is a Python package for large-scale single-cell/single-nucleus data analysis. To load Cumulus results into
Pegasus, we provide instructions based on file format:

• h5ad: Annotated H5AD file. This is the standard output format of Cumulus. You can also set its mode by:

import pegasus as pg
adata = pg.read_input("output_name.h5ad")

Sometimes you may also want to specify how the result is loaded into memory. In this case, read_input has
argument h5ad_mode. Please see its documentation for details.

13.9. Run Cumulus for sc/snRNA-Seq data analysis 101

./cumulus.html#cluster-outputs
https://pegasus.readthedocs.io
https://pegasus.readthedocs.io/en/latest/api/pegasus.read_input.html

Cumulus Documentation

• loom: When setting “output_loom” field in Cumulus cluster to true, a loom format file will be generated
besides H5AD result. To load loom file, you can optionally set its genome name in the following way as this
information is not contained by loom file:

import pegasus as pg
data = pg.read_input("output_name.loom", genome = "GRCh38")

After loading, Pegasus manipulate the data matrix in anndata structure.

13.9.5 Load Cumulus results into Seurat

Seurat is a single-cell data analysis package written in R.

Load H5AD File into Seurat

First, you need to set “output_seurat_compatible” field to true in cumulus cluster inputs to generate a Seurat-
compatible output file output_name.seurat.h5ad, in addition to the normal result output_name.h5ad.

Notice that Python, and Python package anndata with version at least 0.6.22.post1, and R package reticulate are
required to load the result into Seurat.

Execute the R code below to load the h5ad result into Seurat (working with both Seurat v2 and v3):

source("https://raw.githubusercontent.com/klarman-cell-observatory/cumulus/master/
→˓workflows/cumulus/h5ad2seurat.R")
ad <- import("anndata", convert = FALSE)
test_ad <- ad$read_h5ad("output_name.seurat.h5ad")
result <- convert_h5ad_to_seurat(test_ad)

The resulting Seurat object result has three data slots:

• raw.data records filtered raw count matrix.

• data records filtered and log-normalized expression matrix.

• scale.data records variable-gene-selected, standardized expression matrix that are ready to perform PCA.

Load loom File into Seurat

First, you need to set “output_loom” field to true in cumulus cluster inputs to generate a loom format output file, say
output_name.loom, in addition to the normal result output_name.h5ad.

You also need to install loomR package in your R environment:

install.package("devtools")
devtools::install_github("mojaveazure/loomR", ref = "develop")

Execute the R code below to load the loom file result into Seurat (working with Seurat v3 only):

source("https://raw.githubusercontent.com/klarman-cell-observatory/cumulus/master/
→˓workflows/cumulus/loom2seurat.R")
result <- convert_loom_to_seurat("output_name.loom")

In addition, if you want to set an active cluster label field for the resulting Seurat object, do the following:

102 Chapter 13. Version 0.1.0 July 27, 2018

https://anndata.readthedocs.io/en/latest/
https://satijalab.org/seurat/
https://anndata.readthedocs.io/en/latest/
https://cran.r-project.org/web/packages/reticulate/index.html

Cumulus Documentation

Idents(result) <- result@meta.data$louvain_labels

where louvain_labels is the key to the Louvain clustering result in Cumulus, which is stored in cell attributes
result@meta.data.

13.9.6 Load Cumulus results into SCANPY

SCANPY is another Python package for single-cell data analysis. We provide instructions on loading Cumulus output
into SCANPY based on file format:

• h5ad: Annotated H5AD file. This is the standard output format of Cumulus:

import scanpy as sc
adata = sc.read_h5ad("output_name.h5ad")

Sometimes you may also want to specify how the result is loaded into memory. In this case, read_h5ad has argument
backed. Please see SCANPY documentation for details.

• loom: This format is generated when setting “output_loom” field in Cumulus cluster to true:

import scanpy as sc
adata = sc.read_loom("output_name.loom")

Besides, read_loom has a boolean sparse argument to decide whether to read the data matrix as sparse, with
default value True. If you want to load it as a dense matrix, simply type:

adata = sc.read_loom("output_name.loom", sparse = False)

After loading, SCANPY manipulates the data matrix in anndata structure.

13.9.7 Visualize Cumulus results in Python

Ensure you have Pegasus installed.

Download your analysis result data, say output_name.h5ad, from Google bucket to your local machine.

Load the output:

import pegasus as pg
adata = pg.read_input("output_name.h5ad")

Violin plot of the computed quality measures:

fig = pg.violin(adata, keys = ['n_genes', 'n_counts', 'percent_mito'], by = 'passed_qc
→˓')
fig.savefig('output_file.qc.pdf', dpi = 500)

t-SNE plot colored by louvain cluster labels and channel:

fig = pg.embedding(adata, basis = 'tsne', keys = ['louvain_labels', 'Channel'])
fig.savefig('output_file.tsne.pdf', dpi = 500)

t-SNE plot colored by genes of interes (also known as Feature Plot):

13.9. Run Cumulus for sc/snRNA-Seq data analysis 103

https://scanpy.readthedocs.io
https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.read_h5ad.html
https://anndata.readthedocs.io/en/latest/
https://pegasus.readthedocs.io/en/latest/installation.html

Cumulus Documentation

fig = pg.embedding(adata, basis = 'tsne', keys = ['CD4', 'CD8A'])
fig.savefig('output_file.genes.tsne.pdf', dpi = 500)

For other embedding plots using FIt-SNE (fitsne), Net t-SNE (net_tsne), CITE-Seq FIt-SNE
(citeseq_fitsne), UMAP (umap), Net UMAP (net_umap), FLE (fle), or Net FLE (net_fle) coordinates,
simply substitute its basis name for tsne in the code above.

Composition plot on louvain cluster labels colored by channel:

fig = pg.composition_plot(adata, by = 'louvain_labels', condition = 'Channel')
fig.savefig('output_file.composition.pdf', dpi = 500)

13.10 Demuxlet

This workflow runs demuxlet to deconvolute sample identity when multiple samples are pooled by barcoded single-cell
sequencing.

1. Align your single-cell sequencing data (for example using the cellranger or drop_seq workflows).

2. Create a sample sheet.

Please note that the columns in the tab separated file must be in the order shown below and does not
contain a header line.

Column Description
Name Sample name.
BAM Location of the BAM file in the cloud (gs:// URL).
Barcodes Location of the valid cellular barcodes file in the cloud (gs:// URL).
VCF Location of the VCF file to use for this sample in the cloud (gs:// URL).

Example:

sample-1,gs://fc-e0000000/sample-1/out/possorted_genome_bam.bam,gs://fc-
→˓e0000000/sample-1/out/filtered_feature_bc_matrix/barcodes.tsv.gz,gs://
→˓fc-e0000000/sample-1.vcf
sample-2,gs://fc-e0000000/sample-2/out/possorted_genome_bam.bam,gs://fc-
→˓e0000000/sample-2/out/filtered_feature_bc_matrix/barcodes.tsv.gz,gs://
→˓fc-e0000000/sample-2.vcf

3. Upload your sample sheet to the workspace bucket.

Example:

gsutil cp /foo/bar/projects/sample_sheet.tsv gs://fc-e0000000/

4. Import demuxlet workflow to your workspace.

See the Terra documentation for adding a workflow. The workflow is under Broad Methods
Repository with the name “cumulus/demuxlet”.

Next, in the workflow page, click the Export to Workspace... button, and select the
workspace you want to export to in the drop-down menu.

5. In your workspace, open demuxlet in WORKFLOWS tab. Select Run workflow with inputs
defined by file paths as below

104 Chapter 13. Version 0.1.0 July 27, 2018

https://github.com/statgen/popscle
cellranger.html
drop_seq.html
https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository

Cumulus Documentation

and click the Save button.

13.10.1 Inputs

Please see the description of important inputs below.

Column Description
tsv_file Four column tab-separated file without a header with name, coordinate sorted bam, barcodes, and

vcf
min_MQ Minimum mapping quality to consider (default 20)
alpha Grid of alpha to search for (default [0.1, 0.2, 0.3, 0.4, 0.5]).
min_TD Minimum distance to the tail (default 0)
tag_group Tag representing readgroup or cell barcodes, in the case to partition the BAM file into multiple

groups (default “CB”)
tag_UMI Tag representing UMIs (default “UB”“)
field FORMAT field to extract the genotype, likelihood, or posterior from (default “GT”)
geno_error Offset of genotype error rate (default 0.1)

13.10.2 Outputs

The demuxlet output file contains the best guess of the sample identity, with detailed statistics to reach to the best
guess.

13.11 Run Terra pipelines via command line

You can run Terra pipelines via the command line by installing the altocumulus package.

13.11.1 Install altocumulus for Broad users

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab

The above command requests an interactive shell using the regevlab project with 4G memory per thread, 8 threads.
Feel free to change the memory, thread, and project parameters.

Add conda to your path:

reuse Anaconda3

Activate the alto virtual environment:

13.11. Run Terra pipelines via command line 105

Cumulus Documentation

source activate /seq/regev_genome_portal/conda_env/cumulus

13.11.2 Install altocumulus for non-Broad users

1. Make sure you have conda installed. If you haven’t installed conda, use the following commands to install it
on Linux:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh .
bash Miniconda3-latest-Linux-x86_64.sh -p /home/foo/miniconda3
mv Miniconda3-latest-Linux-x86_64.sh /home/foo/miniconda3

where /home/foo/miniconda3 should be replaced by your own folder holding Miniconda3.

Or use the following commdands for MacOS installation:

curl -O curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash Miniconda3-latest-MacOSX-x86_64.sh -p /Users/foo/miniconda3
mv Miniconda3-latest-MacOSX-x86_64.sh /Users/foo/miniconda3

where ``/Users/foo/miniconda3`` should be replaced by your own folder holding
→˓Miniconda3.

1. Create a conda environment named “alto” and install altocumulus:

conda create -n alto -y pip
source activate alto
pip install altocumulus

When the installation is done, type alto -h in terminal to see if you can see the help information.

13.11.3 Run Terra workflows via alto run

alto run runs a Terra method. Features:

• Uploads local files/directories in your inputs to a Google Cloud bucket updates the file paths to point to the
Google Cloud bucket.

Your sample sheet can point to local file paths. In this case, alto run will take care of uploading
directories smartly (e.g. only upload necessary files in BCL folders) and modifying the sample sheet
to point to a Google Cloud bucket.

• Creates or uses an existing workspace.

• Uses the latest version of a method unless the method version is specified.

Options

Required options are in bold.

106 Chapter 13. Version 0.1.0 July 27, 2018

https://docs.conda.io/en/latest/miniconda.html

Cumulus Documentation

Name Description

-m <METHOD>
–method
<METHOD>

Specify a Terra workflow <METHOD> to use.
<METHOD> is of format Namespace/Name (e.g.
cumulus/cellranger_workflow).
A snapshot version number can optionally be specified (e.g.
cumulus/cellranger_workflow/4); otherwise the latest snapshot of the method
is used.

-w
<WORKSPACE>
–workspace
<WORKSPACE>

Specify which Terra workspace <WORKSPACE> to use.
<WORKSPACE> is also of format Namespace/Name (e.g. foo/bar). The workspace
will be created if it does not exist.

-i
<WDL_INPUTS>
–inputs
<WDL_INPUTS>

Specify the WDL input JSON file to use.
It can be a local file, a JSON string, or a Google bucket URL directing to a remote JSON
file.

–bucket-folder
<folder>

Store inputs to <folder> under workspace’s google bucket.

-o <updated_json>
–upload
<updated_json>

Upload files/directories to Google bucket of the workspace, and generate an updated input
JSON file (with local paths replaced by Google bucket URLs) to <updated_json> on local
machine.

–no-cache Disable Terra cache calling

Example

This example shows how to use alto run to run cellranger_workflow to extract gene-count matrices from sequenc-
ing output.

1. Prepare your sample sheet example_sample_sheet.csv as the following:

Sample,Reference,Flowcell,Lane,Index,Chemistry
sample_1,GRCh38,/my-local-path/flowcell1,1-2,SI-GA-A8,threeprime
sample_2,GRCh38,/my-local-path/flowcell1,3-4,SI-GA-B8,threeprime
sample_3,mm10,/my-local-path/flowcell1,5-6,SI-GA-C8,fiveprime
sample_4,mm10,/my-local-path/flowcell1,7-8,SI-GA-D8,fiveprime
sample_1,GRCh38,/my-local-path/flowcell2,1-2,SI-GA-A8,threeprime
sample_2,GRCh38,/my-local-path/flowcell2,3-4,SI-GA-B8,threeprime

(continues on next page)

13.11. Run Terra pipelines via command line 107

Cumulus Documentation

(continued from previous page)

sample_3,mm10,/my-local-path/flowcell2,5-6,SI-GA-C8,fiveprime
sample_4,mm10,/my-local-path/flowcell2,7-8,SI-GA-D8,fiveprime

where /my-local-path is the top-level directory of your BCL files on your local machine.

Note that sample_1, sample_2, sample_3, and sample_4 are sequenced on 2 flowcells.

2. Prepare your JSON input file inputs.json for cellranger_workflow:

{
"cellranger_workflow.input_csv_file" : "/my-local-path/sample_sheet.csv",
"cellranger_workflow.output_directory" : "gs://url/outputs",
"cellranger_workflow.delete_input_bcl_directory": true

}

where gs://url/outputs is the folder on Google bucket of your workspace to hold output.

3. Run the following command to kick off your Terra workflow:

alto run -m cumulus/cellranger_workflow -i inputs.json -w myworkspace_namespace/
→˓myworkspace_name -o inputs_updated.json

where myworkspace_namespace/myworkspace_name should be replaced by your workspace names-
pace and name.

Upon success, alto run returns a URL pointing to the submitted Terra job for you to monitor.

If for any reason, your job failed. You could rerun it without uploading files again via the following command:

alto run -m cumulus/cellranger_workflow -i inputs_updated.json -w myworkspace_
→˓namespace/myworkspace_name

because inputs_updated.json is the updated version of inputs.json with all local paths being replaced by
their corresponding Google bucket URLs after uploading.

13.12 Examples

13.12.1 Example of Cell-Hashing and CITE-Seq Analysis on Cloud

In this example, you’ll learn how to perform Cell-Hashing and CITE-Seq analysis using cumulus on Terra.

0. Workspace and Data Preparation

After registering on Terra and creating a workspace there, you’ll need the following two information:

• Terra workspace name. This is shown on your Terra workspace webpage, with format “<workspace-
namespace>/<workspace-name>”. Let it be ws-lab/ws-01 in this example, which means that your
workspace has namespace ws-lab and name ws-01.

• The corresponding Google Cloud Bucket location of your workspace. You can check it by click-
ing the link under “Google Bucket” title on your Terra workspace webpage. Let it be gs://
fc-e0000000-0000-0000-0000-000000000000 in this example.

Then upload your BCL directories to Google bucket of your workspace using gsutil:

108 Chapter 13. Version 0.1.0 July 27, 2018

https://app.terra.bio/
https://cloud.google.com/storage/docs/gsutil

Cumulus Documentation

gsutil -m cp -r /my-local-path/BCL/* gs://fc-e0000000-0000-0000-0000-000000000000/
→˓data-source

where option -m means copy in parallel, -r means copy the directory recursively, /my-local-path/BCL is the
path to the top-level directory of your BCL files on your local machine, and data-source is the folder on Google
bucket to hold the uploaded data.

1. Extract Gene-Count Matrices

First step is to extract gene-count matrices from sequencing output.

You need two original files from your dataset to start:

• Cell-Hashing Index CSV file, say its filename is cell_hashing_index.csv, of format “fea-
ture_barcode,feature_name”. See an example below:

AATCATCACAAGAAA,CB1
GGTCACTGTTACGTA,CB2
... ...

where each line is a pair of feature barcode and feature name of a sample.

• CITE-Seq Index CSV file, say its filename is cite_seq_index.csv, of the same format as above. See an
example below:

TTACATGCATTACGA,CD19
GCATTAGCATGCAGC,HLA-ABC
... ...

where each line is a pair of Barcode and Specificity of an Antibody.

Then upload them to your Google Bucket using gsutil. Assuming both files are in folder /Users/foo/
data-source on your local machine, type the following command to upload:

gsutil -m cp -r /Users/foo/data-source gs://fc-e0000000-0000-0000-0000-000000000000/
→˓data-source

where gs://fc-e0000000-0000-0000-0000-000000000000/data-source is your working directory
at cloud side, which can be changed at your will.

Next, create a sample sheet, cellranger_sample_sheet.csv, for Cell Ranger processing. Below is an exam-
ple:

Sample,Reference,Flowcell,Lane,Index,DataType,FeatureBarcodeFile
sample_control,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/data-source,2,SI-
→˓GA-F1,rna
sample_cc,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/data-source,3,SI-GA-A1,
→˓rna
sample_cell_hashing,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/data-source,3,
→˓ATTACTCG,adt,cell_hashing_index.csv
sample_cite_seq,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/data-source,3,
→˓CGTGAT,adt,cite_seq_index.csv

For the details on how to prepare this sample sheet, please refer to Step 3 of Cell Ranger sample sheet instruction.

13.12. Examples 109

https://cloud.google.com/storage/docs/gsutil
../cellranger.html#prepare-a-sample-sheet

Cumulus Documentation

When you are done with the sample sheet, upload it to Google bucket:

gsutil cp cellranger_sample_sheet.csv gs://fc-e0000000-0000-0000-0000-000000000000/my-
→˓dir/

Now we are ready to set up cellranger_workflow workflow for this phase. If your workspace doesn’t have this
workflow, import it to your workspace by following cellranger_workflow import instructions.

Then prepare a JSON file, cellranger_inputs.json, which is used to set up the workflow inputs:

{
"cellranger_workflow.input_csv_file" : "gs://fc-e0000000-0000-0000-0000-

→˓000000000000/my-dir/cellranger_sample_sheet.csv",
"cellranger_workflow.output_directory" : "gs://fc-e0000000-0000-0000-0000-

→˓000000000000/my-dir"
}

where gs://fc-e0000000-0000-0000-0000-000000000000/my-dir is the remote directory in which
the output of cellranger_workflow will be generated. For the details on the options above, please refer to Cell Ranger
workflow inputs.

When you are done with the JSON file, on cellranger_workflow workflow page, upload cellranger_inputs.
json by clicking upload json link as below:

Then Click SAVE button to save the inputs, and click RUN ANALYSIS button as below to start the job:

When the execution is done, all the output results will be in folder gs://
fc-e0000000-0000-0000-0000-000000000000/my-dir.

You’ll need 4 files for the next phases. 3 are from the output:

• RNA count matrix of the sample group of interest: gs://fc-e0000000-0000-0000-0000-000000000000/
my-dir/sample_cc/raw_feature_bc_matrix.h5;

• Cell-Hashing Antibody count matrix: gs://fc-e0000000-0000-0000-0000-000000000000/
my-dir/sample_cell_hashing/sample_cell_hashing.csv;

• CITE-Seq Antibody count matrix: gs://fc-e0000000-0000-0000-0000-000000000000/
my-dir/sample_cite_seq/sample_cite_seq.csv.

Besides, create a sample sheet, citeseq_antibody_control.csv, with content as the following example:

Antibody,Control
CD3-0034,Mouse_IgG1
CD4-0045,Mouse_IgG1
... ...

where each line is a pair of Antibody name and the Control group name to which it is assigned. You should be able to
get this information from your experiment setting or the original dataset.

110 Chapter 13. Version 0.1.0 July 27, 2018

../cellranger.html#import-cellranger-workflow
../cellranger.html#workflow-input
../cellranger.html#workflow-input

Cumulus Documentation

Copy or upload them to gs://fc-e0000000-0000-0000-0000-000000000000/my-dir.

2. Demultiplex Cell-Hashing Data

1. Prepare a sample sheet, demultiplex_sample_sheet.csv, with the following content:

OUTNAME,RNA,TagFile,TYPE
exp,gs://fc-e0000000-0000-0000-0000-000000000000/my-dir/raw_feature_bc_matrix.h5,
→˓gs://fc-e0000000-0000-0000-0000-000000000000/my-dir/sample_cell_hashing.csv,
→˓cell-hashing

where OUTNAME specifies the subfolder and file names of output, which is free to change, RNA and TagFile
columns specify the RNA and hashing tag meta-data of samples, and TYPE is cell-hashing for this phase.

Then upload it to Google bucket:

gsutil cp demultiplex_sample_sheet.csv gs://fc-e0000000-0000-0000-0000-
→˓000000000000/my-dir/

2. If your workspace doesn’t have demultiplexing workflow, import it to your workspace by following Step 2 of
demultiplexing workflow preparation instructions.

3. Prepare an input JSON file, demultiplex_inputs.json with the following content to set up cumu-
lus_hashing_cite_seq workflow inputs:

{
"demultiplexing.input_sample_sheet" : "gs://fc-e0000000-0000-0000-0000-

→˓000000000000/my-dir/demultiplex_sample_sheet.csv",
"demultiplexing.output_directory" : "gs://fc-e0000000-0000-0000-0000-

→˓000000000000/my-dir/"
}

For the details on these options, please refer to demultiplexing workflow inputs.

4. On the page of cumulus_hashing_cite_seq workflow, upload demultiplex_inputs.json by clicking
upload json link. Save the inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you’ll get a processed file, exp_demux.zarr, stored on cloud gs://
fc-e0000000-0000-0000-0000-000000000000/my-dir/exp/.

3. Merge RNA and ADT Matrices for CITE-Seq Data

1. Prepare a sample sheet, cite_seq_sample_sheet.csv, with the following content:

OUTNAME,RNA,ADT
exp_raw,gs://fc-e0000000-0000-0000-0000-000000000000/my-dir/exp/exp_demux.zarr,
→˓gs://fc-e0000000-0000-0000-0000-000000000000/my-dir/sample_cite_seq.csv

The structure of sample sheet here is the same as Phase 2. The difference is that you are now using the demulti-
plexed output h5sc file from Phase 2 as RNA here.

Then upload it to Google bucket:

13.12. Examples 111

../demultiplexing.html#prepare-input-data-and-import-workflow
../demultiplexing.html#workflow-inputs

Cumulus Documentation

gsutil cp cite_seq_sample_sheet.csv gs://fc-e0000000-0000-0000-0000-000000000000/
→˓my-dir/

2. Prepare an input JSON file, cite_seq_inputs.json, in the same directory as above, with the following
content:

{
"cumulus_cite_seq.input_sample_sheet" : "gs://fc-e0000000-0000-0000-0000-

→˓000000000000/my-dir/cite_seq_sample_sheet.csv",
"cumulus_cite_seq.output_directory" : "gs://fc-e0000000-0000-0000-0000-

→˓000000000000/my-dir/",
"cumulus_cite_seq.antibody_control_csv" : "gs://fc-e0000000-0000-0000-

→˓0000-000000000000/my-dir/citeseq_antibody_control.csv"
}

For the details on these options, please refer to cumulus_cite_seq workflow inputs.

3. On cumulus_cite_seq workflow page, clear all previous inputs, and then upload cite_seq_inputs.json
by clicking upload json link. Save the new inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you’ll get a merged raw matrices file, exp_raw.zarr, stored on cloud gs://
fc-e0000000-0000-0000-0000-000000000000/my-dir/exp_raw.

4. Data Analysis

1. Prepare a sample sheet, cumulus_count_matrix.csv, with the following content:

Sample,Location
exp,gs://fc-e0000000-0000-0000-0000-000000000000/my-dir/exp_raw/exp_raw.zarr

This sample sheet describes the metadata for each 10x channel (as one row in the sheet). Sample specifies the
name for each channel, which can be renamed; Location specifies the file location, which is the output of Phase
3.

Then upload it to Google bucket:

gsutil cp cumulus_count_matrix.csv gs://fc-e0000000-0000-0000-0000-000000000000/
→˓my-dir/

Alternative, if you have only one count matrix for analysis, which is the case here, you can skip this step. See
this manual for input file formats that cumulus currently supports.

2. If your workspace doesn’t have cumulus workflow, import it to your workspace by following Step 2 and 3 of
cumulus documentation.

3. Prepare a JSON file, cumulus_inputs.jsonwith the following content to set up cumulus workflow inputs:

{
"cumulus.input_file" : "gs://fc-e0000000-0000-0000-0000-000000000000/my-

→˓dir/cumulus_count_matrix.csv",
"cumulus.output_directory" : "gs://fc-e0000000-0000-0000-0000-

→˓000000000000/my-dir/results",
"cumulus.output_name" : "exp_merged_out",
"cumulus.num_cpu" : 8,
"cumulus.select_only_singlets" : true,

(continues on next page)

112 Chapter 13. Version 0.1.0 July 27, 2018

../cite_seq.html#cumulus-cite-seq-workflow-inputs
../cumulus.html#prepare-input-data
../cumulus.html

Cumulus Documentation

(continued from previous page)

"cumulus.cite_seq" : true,
"cumulus.run_louvain" : true,
"cumulus.find_markers_lightgbm" : true,
"cumulus.remove_ribo" : true,
"cumulus.mwu" : true,
"cumulus.annotate_cluster" : true,
"cumulus.plot_fitsne" : "louvain_labels,assignment",
"cumulus.plot_citeseq_fitsne" : "louvain_labels,assignment",
"cumulus.plot_composition" : "louvain_labels:assignment"

}

Alternatively, if you have only one count matrix for analysis and has skipped Step 1, directly set its location in
cumulus.input_file parameter above. For this example, it is:

{
"cumulus.input_file" : "gs://fc-e0000000-0000-0000-0000-000000000000/my-

→˓dir/exp_raw/exp_raw.zarr",
... ...

}

All the rest parameters remain the same.

Notice that for some file formats, cumulus.genome is required.

A typical cumulus pipeline consists of 4 steps, which is given here. For the details of options above, please refer
to cumulus inputs.

4. On the page of cumulus workflow, upload cumulus_inputs.json by clicking upload json link. Save
the inputs, and click RUN ANALYSIS button to start the job.

When the execution is done, you’ll get the following results stored on cloud gs://
fc-e0000000-0000-0000-0000-000000000000/my-dir/results/exp_merged_out/ to check:

• exp_merged_out.zarr: The aggregated count matrix data. This file doesn’t exist if your cumulus.
input_file parameter is not a sample sheet.

• exp_merged_out.h5ad: The processed RNA matrix data.

• exp_merged_out.filt.xlsx: The Quality-Control (QC) summary of the raw data.

• exp_merged_out.filt.{UMI, gene, mito}.pdf: The QC plots of the raw data.

• exp_merged_out.de.xlsx: Differential Expression analysis result.

• exp_merged_out.markers.xlsx: Result on cluster-specific markers predicted by gradient boosting ma-
chine.

• exp_merged_out.anno.txt: Cell type annotation output.

• exp_merged_out.fitsne.pdf: FIt-SNE plot.

• exp_merged_out.citeseq.fitsne.pdf: CITE-Seq FIt-SNE plot.

• exp_merged_out.louvain_labels.assignment.composition.pdf: Composition plot.

You can directly go to your Google Bucket to view or download these results.

13.12. Examples 113

../cumulus.html#cumulus-steps
../cumulus.html#global-inputs

Cumulus Documentation

(optional) Run Terra Workflows in Command Line

For Phase 1, 2, and 3, besides uploading sample sheets and setting-up workflow inputs on workflow pages, you can
also start the workflow execution via command line using altocumulus tool.

First, install altocumulus by following altocumulus installation instruction.

1. For Phase 1 above, when you are done with creating a sample sheet cellranger_sample_sheet.csv on
your local machine, in the same directory, prepare JSON file cellranger_inputs.json as below:

{
"cellranger_workflow.input_csv_file" : "cellranger_sample_sheet.csv",
... ...

}

where all the rest parameters remain the same as in Phase 1. Import cellranger_workflow workflow to your
workspace as usual.

Now run the following command in the same directory on your local machine:

alto run -m cumulus/cellranger_workflow -w ws-lab/ws-01 --bucket-folder my-dir -i
→˓cellranger_input.json -o cellranger_input_updated.json

Notice that if the execution failed, you could rerun the execution by setting cellranger_input_updated.
json for -i option to use the sample sheet already uploaded to Google bucket. Similarly below.

2. For Phase 2 above, similarly, in the same directory of your demultiplex_sample_sheet.csv file, pre-
pare JSON file demultiplex_inputs.json as below:

{
"demultiplexing.input_sample_sheet" : "demultiplex_sample_sheet.csv",
... ...

}

where all the rest parameters remain the same as in Phase 2. Import demultiplexing workflow to your workspace
as usual.

Run the following command in the same directory on your local machine:

alto run -m cumulus/demultiplexing -w ws-lab/ws-01 --bucket-folder my-dir -i
→˓demultiplex_inputs.json -o demultiplex_inputs_updated.json

3. For Phase 3 above, similarly, in the same directory of your cite_seq_sample_sheet.csv file, prepare
JSON file cite_seq_inputs.json as below:

{
"cumulus_cite_seq.input_sample_sheet" : "cite_seq_sample_sheet.csv",
... ...

}

where all the rest parameters remain the same as in Phase 3. Import cumulus_cite_seq workflow to your
workspace as usual.

Run the following command in the same directory on your local machine:

alto run -m cumulus/cumulus_cite_seq -w ws-lab/ws-01 --bucket-folder my-dir -i
→˓cite_seq_inputs.json -o cite_seq_inputs_updated.json

4. For Phase 4 above, similarly, in the same directory of your cumulus_count_matrix.csv file, prepare
JSON file cumulus_inputs.json as below:

114 Chapter 13. Version 0.1.0 July 27, 2018

../command_line.html#install-altocumulus-for-non-broad-users

Cumulus Documentation

{
"cumulus.input_file" : "cumulus_count_matrix.csv",
... ...

}

where all the rest parameters remain the same as in Phase 4.

Alternatively, if your input is not a sample sheet, simply set your cumulus_inputs.json as:

{
"cumulus.input_file" : "gs://fc-e0000000-0000-0000-0000-000000000000/my-

→˓dir/exp_raw/exp_raw.zarr",
... ...

}

where all the rest parameters remain the same. Import cumulus workflow to your workspace as usual.

Run the following command in the same directory of your cumulus_inputs.json file:

alto run -m cumulus/cumulus -w ws-lab/ws-01 --bucket-folder my-dir/results -i
→˓cumulus_inputs.json -o cumulus_inputs_updated.json

Examples using Terra to perform single-cell sequencing analysis are provided here. Please click the topics on the left
panel under title “Examples” to explore.

13.13 Contributions

We welcome contributions to our repositories that make up the Cumulus ecosystem:

• pegasus

• pegasusio

• demuxEM

• cumulus

• cumulus_feature_barcoding

• scPlot

• altocumulus

• cirrocumulus

13.14 Contact us

If you have any questions related to Cumulus, please feel free to contact us via Cumulus Support Google Group.

13.13. Contributions 115

https://github.com/klarman-cell-observatory/pegasus
https://github.com/klarman-cell-observatory/pegasusio
https://github.com/klarman-cell-observatory/demuxEM
https://github.com/klarman-cell-observatory/cumulus
https://github.com/klarman-cell-observatory/cumulus_feature_barcoding
https://github.com/klarman-cell-observatory/scPlot
https://github.com/klarman-cell-observatory/altocumulus
https://github.com/klarman-cell-observatory/cirrocumulus
mailto:cumulus-support@googlegroups.com

	Version 0.15.0 May 6, 2020
	Version 0.14.0 February 28, 2020
	Version 0.13.0 February 7, 2020
	Version 0.12.0 December 14, 2019
	Version 0.11.0 December 4, 2019
	Version 0.10.0 October 2, 2019
	Version 0.7.0 Feburary 14, 2019
	Version 0.6.0 January 31, 2019
	Version 0.5.0 November 18, 2018
	Version 0.4.0 October 26, 2018
	Version 0.3.0 October 24, 2018
	Version 0.2.0 October 19, 2018
	Version 0.1.0 July 27, 2018

