

    
      
          
            
  
Cumulus WDL workflows and Dockerfiles

[image: Release] [https://github.com/klarman-cell-observatory/cumulus/releases] [image: License] [https://github.com/klarman-cell-observatory/cumulus/blob/master/LICENSE] [image: Docs] [https://cumulus.readthedocs.io/]

All of our docker images are publicly available on Quay [https://quay.io/organization/cumulus] and Docker Hub [https://cloud.docker.com/u/cumulusprod/]. Our workflows use Quay as the
default Docker registry. Users can use Docker Hub as the Docker registry by entering cumulusprod for the workflow
input “docker_registry”, or enter a custom registry name of their own choice.

If you use Cumulus in your research, please consider citing:

Li, B., Gould, J., Yang, Y. et al. “Cumulus provides cloud-based data analysis for large-scale single-cell and
single-nucleus RNA-seq”. Nat Methods 17, 793–798 (2020). https://doi.org/10.1038/s41592-020-0905-x


Version 1.2.0 January 19, 2021


	
	Add spaceranger workflow:

	
	Wrap up spaceranger version 1.2.1










	
	On cellranger workflow:

	
	Fix workflow WDL to support both single index and dual index


	Add support for cellranger version 5.0.0 and 5.0.1


	Add support for targeted gene expression analysis


	Add support for --include-introns and --no-bam options for cellranger count


	Remove --force-cells option for cellranger vdj as noted in cellranger 5.0.0 release note


	Add GRCh38_vdj_v5.0.0 and GRCm38_vdj_v5.0.0 references










	Bug fix on cumulus workflow.


	Reorganize the sidebar of Cumulus documentation website.







Version 1.1.0 December 28, 2020


	
	On cumulus workflow:

	
	Add CITE-Seq data analysis back. (See section Run CITE-Seq analysis for details)


	Add doublet detection. (See infer_doublets, expected_doublet_rate, and doublet_cluster_attribute input fields)


	For tSNE visualization, only support FIt-SNE algorithm. (see run_tsne and plot_tsne input fields)


	Improve efficiency on log-normalization and DE tests.


	Support multiple marker JSON files used in cell type annotation. (see organism input field)


	More preset gene sets provided in gene score calculation. (see calc_signature_scores input field)










	
	Add star_solo workflow (see STARsolo section for details):

	
	Use STARsolo [https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md] to generate count matrices from FASTQ files.


	Support chemistry protocols such as 10X-V3, 10X-V2, DropSeq, and SeqWell.










	Update the example of analyzing hashing and CITE-Seq data (see Example section) with the new workflows.


	Bug fix.







Version 1.0.0 September 23, 2020


	Add demultiplexing workflow for cell-hashing/nucleus-hashing/genetic-pooling analysis.


	Add support on CellRanger version 4.0.0.


	
	Update cumulus workflow with Pegasus version 1.0.0:

	
	Use zarr file format to handle data, which has a better I/O performance in general.


	Support focus analysis on Unimodal data, and appending other Unimodal data to it. (focus and append inputs in cluster step).


	Quality-Control: Change percent_mito default from 10.0 to 20.0; by default remove bounds on UMIs (min_umis and max_umis inputs in cluster step).


	Quality-Control: Automatically figure out name prefix of mitochondrial genes for GRCh38 and mm10 genome reference data.


	Support signature / gene module score calculation. (calc_signature_scores input in cluster step)


	Add Scanorama method to batch correction. (correction_method input in cluster step).


	Calculate UMAP embedding by default, instead of FIt-SNE.


	Differential Expression (DE) analysis: remove inputs mwu and auc as they are calculated by default. And cell-type annotation uses MWU test result by default.










	Remove cumulus_subcluster workflow.







Version 0.15.0 May 6, 2020


	Update all workflows to OpenWDL version 1.0.


	Cumulus now supports multi-job execution from Terra data table input.


	Cumulus generates Cirrocumulus input in .cirro folder, instead of a huge .parquet file.







Version 0.14.0 February 28, 2020


	Added support for gene-count matrices generation using alternative tools (STARsolo, Optimus, Salmon alevin, Kallisto BUStools).


	Cumulus can process demultiplexed data with remapped singlets names and subset of singlets.


	Update VDJ related inputs in Cellranger workflow.


	SMART-Seq2 and Count workflows are in OpenWDL version 1.0.







Version 0.13.0 February 7, 2020


	Added support for aggregating scATAC-seq samples.


	Cumulus now accepts mtx format input.







Version 0.12.0 December 14, 2019


	Added support for building references for sc/snRNA-seq, scATAC-seq, single-cell immune profiling, and SMART-Seq2 data.







Version 0.11.0 December 4, 2019


	Reorganized Cumulus documentation.







Version 0.10.0 October 2, 2019


	scCloud is renamed to Cumulus.


	Cumulus can accept either a sample sheet or a single file.







Version 0.7.0 Feburary 14, 2019


	Added support for 10x genomics scATAC assays.


	scCloud runs FIt-SNE as default.







Version 0.6.0 January 31, 2019


	Added support for 10x genomics V3 chemistry.


	Added support for extracting feature matrix for Perturb-Seq data.


	Added R script to convert output_name.seurat.h5ad to Seurat object. Now the raw.data slot stores filtered raw counts.


	Added min_umis and max_umis to filter cells based on UMI counts.


	Added QC plots and improved filtration spreadsheet.


	Added support for plotting UMAP and FLE.


	Now users can upload their JSON file to annotate cell types.


	Improved documentation.


	Added lightGBM based marker detection.







Version 0.5.0 November 18, 2018


	Added support for plated-based SMART-Seq2 scRNA-Seq data.







Version 0.4.0 October 26, 2018


	Added CITE-Seq module for analyzing CITE-Seq data.







Version 0.3.0 October 24, 2018


	Added the demuxEM module for demultiplexing cell-hashing/nuclei-hashing data.







Version 0.2.0 October 19, 2018


	Added support for V(D)J and CITE-Seq/cell-hashing/nuclei-hashing.







Version 0.1.0 July 27, 2018


	KCO tools released!




























          

      

      

    

  

    
      
          
            
  
First Time Running


Authenticate with Google

If you’ve done this before you can skip this step - you only need to do this once.


	Ensure the Google Cloud SDK [https://cloud.google.com/sdk/install] is installed on your computer.


Note: Broad users do not have to install this-they can type:

reuse Google-Cloud-SDK





to make the Google Cloud tools available.






	Execute the following command to login to Google Cloud.:

gcloud auth login







	Copy and paste the link in your unix terminal into your web browser.


	Enter authorization code in unix terminal.









Create a Terra workspace


	Create a new Terra [https://app.terra.bio/] workspace by clicking Create New Workspace in Terra


For more detailed instructions please see this document [https://support.terra.bio/hc/en-us/articles/360022716811-The-Workspace-Organize-Data-Organize-and-Run-Analysis-Tools].














          

      

      

    

  

    
      
          
            
  
Latest and stable versions on Terra [https://app.terra.bio]

Cumulus is a fast growing project. As a result, we frequently update WDL snapshot versions on Terra [https://app.terra.bio].
See below for latest and stable WDL versions you can use.


Stable version - v1.2.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	15 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/15]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generating count matrix using cellranger count or cellranger-atac count, running cellranger vdj or feature-barcode extraction.



	cumulus/spaceranger_workflow

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/spaceranger_workflow/1]

	Run Space Ranger tools to process spatial transcriptomics data, which includes extracting sequence reads using spaceranger mkfastq, and generating count matrix using spaceranger count.



	cumulus/star_solo

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/star_solo/3]

	Run STARsolo to generate gene-count matrices fro FASTQ files.



	cumulus/count

	18 [https://portal.firecloud.org/?return=terra#methods/cumulus/count/18]

	Run alternative tools (STARsolo, Optimus, Salmon alevin, or Kallisto BUStools) to generate gene-count matrices from FASTQ files.



	cumulus/demultiplexing

	22 [https://portal.firecloud.org/?return=terra#methods/cumulus/demultiplexing/22]

	Run tools (demuxEM, souporcell, or demuxlet) for cell-hashing/nucleus-hashing/genetic-pooling analysis.



	cumulus/cellranger_create_reference

	9 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/9]

	Run Cell Ranger tools to build sc/snRNA-seq references.



	cumulus/cellranger_atac_aggr

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/2]

	Run Cell Ranger tools to aggregate scATAC-seq samples.



	cumulus/cellranger_atac_create_reference

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/2]

	Run Cell Ranger tools to build scATAC-seq references.



	cumulus/cellranger_vdj_create_reference

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/3]

	Run Cell Ranger tools to build single-cell immune profiling references.



	cumulus/smartseq2

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7]

	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files.



	cumulus/smartseq2_create_reference

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8]

	Generate user-customized genome references for SMART-Seq2 data.



	cumulus/cumulus

	35 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/34]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.









Stable version - v1.1.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	14 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/14]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/star_solo

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/star_solo/3]

	Run STARsolo to generate gene-count matrices fro FASTQ files.



	cumulus/count

	16 [https://portal.firecloud.org/?return=terra#methods/cumulus/count/16]

	Run alternative tools (STARsolo, Optimus, Salmon alevin, or Kallisto BUStools) to generate gene-count matrices from FASTQ files.



	cumulus/demultiplexing

	21 [https://portal.firecloud.org/?return=terra#methods/cumulus/demultiplexing/21]

	Run tools (demuxEM, souporcell, or demuxlet) for cell-hashing/nucleus-hashing/genetic-pooling analysis.



	cumulus/cellranger_create_reference

	9 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/9]

	Run Cell Ranger tools to build sc/snRNA-seq references.



	cumulus/cellranger_atac_aggr

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/2]

	Run Cell Ranger tools to aggregate scATAC-seq samples.



	cumulus/cellranger_atac_create_reference

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/2]

	Run Cell Ranger tools to build scATAC-seq references.



	cumulus/cellranger_vdj_create_reference

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/3]

	Run Cell Ranger tools to build single-cell immune profiling references.



	cumulus/smartseq2

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7]

	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/smartseq2_create_reference

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8]

	Generate user-customized genome references for SMART-Seq2 data.



	cumulus/cumulus

	34 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/34]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.









Stable version - v1.0.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	12 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/12]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/count

	14 [https://portal.firecloud.org/?return=terra#methods/cumulus/count/14]

	Run alternative tools (STARsolo, Optimus, Salmon alevin, or Kallisto BUStools) to generate gene-count matrices from FASTQ files.



	cumulus/demultiplexing

	20 [https://portal.firecloud.org/?return=terra#methods/cumulus/demultiplexing/20]

	Run tools (demuxEM, souporcell, or demuxlet) for cell-hashing/nucleus-hashing/genetic-pooling analysis.



	cumulus/cellranger_create_reference

	9 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/9]

	Run Cell Ranger tools to build sc/snRNA-seq references.



	cumulus/cellranger_atac_aggr

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/2]

	Run Cell Ranger tools to aggregate scATAC-seq samples.



	cumulus/cellranger_atac_create_reference

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/2]

	Run Cell Ranger tools to build scATAC-seq references.



	cumulus/cellranger_vdj_create_reference

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/3]

	Run Cell Ranger tools to build single-cell immune profiling references.



	cumulus/smartseq2

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7]

	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/smartseq2_create_reference

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8]

	Generate user-customized genome references for SMART-Seq2 data.



	cumulus/cumulus

	31 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/31]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.



	cumulus/cumulus_hashing_cite_seq

	10 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/10]

	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - v0.15.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	10 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/10]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/count

	14 [https://portal.firecloud.org/?return=terra#methods/cumulus/count/14]

	Run alternative tools (STARsolo, Optimus, Salmon alevin, or Kallisto BUStools) to generate gene-count matrices from FASTQ files.



	cumulus/cellranger_create_reference

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/8]

	Run Cell Ranger tools to build sc/snRNA-seq references.



	cumulus/cellranger_atac_aggr

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/2]

	Run Cell Ranger tools to aggregate scATAC-seq samples.



	cumulus/cellranger_atac_create_reference

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/2]

	Run Cell Ranger tools to build scATAC-seq references.



	cumulus/cellranger_vdj_create_reference

	2 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/2]

	Run Cell Ranger tools to build single-cell immune profiling references.



	cumulus/smartseq2

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7]

	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/smartseq2_create_reference

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8]

	Generate user-customized genome references for SMART-Seq2 data.



	cumulus/cumulus

	24 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/24]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.



	cumulus/cumulus_subcluster

	16 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/16]

	Run subcluster analysis using cumulus



	cumulus/cumulus_hashing_cite_seq

	10 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/10]

	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - v0.14.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/8]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/count

	11 [https://portal.firecloud.org/?return=terra#methods/cumulus/count/11]

	Run alternative tools (STARsolo, Optimus, Salmon alevin, or Kallisto BUStools) to generate gene-count matrices from FASTQ files.



	cumulus/cellranger_create_reference

	6 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/6]

	Run Cell Ranger tools to build sc/snRNA-seq references.



	cumulus/cellranger_atac_aggr

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/1]

	Run Cell Ranger tools to aggregate scATAC-seq samples.



	cumulus/cellranger_atac_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/1]

	Run Cell Ranger tools to build scATAC-seq references.



	cumulus/cellranger_vdj_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/1]

	Run Cell Ranger tools to build single-cell immune profiling references.



	cumulus/smartseq2

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/7]

	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/smartseq2_create_reference

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/8]

	Generate user-customized genome references for SMART-Seq2 data.



	cumulus/cumulus

	16 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/16]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.



	cumulus/cumulus_subcluster

	10 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/10]

	Run subcluster analysis using cumulus



	cumulus/cumulus_hashing_cite_seq

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/8]

	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - v0.13.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/7]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/cellranger_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/1]

	Run Cell Ranger tools to build sc/snRNA-seq references.



	cumulus/cellranger_atac_aggr

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_aggr/1]

	Run Cell Ranger tools to aggregate scATAC-seq samples.



	cumulus/cellranger_atac_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/1]

	Run Cell Ranger tools to build scATAC-seq references.



	cumulus/cellranger_vdj_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/1]

	Run Cell Ranger tools to build single-cell immune profiling references.



	cumulus/smartseq2

	5 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/5]

	Run Bowtie2 and RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/smartseq2_create_reference

	4 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/4]

	Generate user-customized genome references for SMART-Seq2 data.



	cumulus/cumulus

	14 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/14]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.



	cumulus/cumulus_subcluster

	9 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/9]

	Run subcluster analysis using cumulus



	cumulus/cumulus_hashing_cite_seq

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/7]

	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - v0.12.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	6 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/6]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/cellranger_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_create_reference/1]

	Run Cell Ranger tools to build sc/snRNA-seq references.



	cumulus/cellranger_atac_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_atac_create_reference/1]

	Run Cell Ranger tools to build scATAC-seq references.



	cumulus/cellranger_vdj_create_reference

	1 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_vdj_create_reference/1]

	Run Cell Ranger tools to build single-cell immune profiling references.



	cumulus/smartseq2

	5 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/5]

	Run Bowtie2 and RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/smartseq2_create_reference

	4 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2_create_reference/4]

	Generate user-customized genome references for SMART-Seq2 workflow.



	cumulus/cumulus

	11 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/11]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.



	cumulus/cumulus_subcluster

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/8]

	Run subcluster analysis using cumulus



	cumulus/cumulus_hashing_cite_seq

	6 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/6]

	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - v0.11.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	4 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/4]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/smartseq2

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/3]

	Run Bowtie2 and RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/cumulus

	8 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/8]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.



	cumulus/cumulus_subcluster

	5 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/5]

	Run subcluster analysis using cumulus



	cumulus/cumulus_hashing_cite_seq

	5 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/5]

	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - v0.10.0








	WDL

	Snapshot

	Function





	cumulus/cellranger_workflow

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/cellranger_workflow/3]

	Run Cell Ranger tools, which include extracting sequence reads using cellranger mkfastq or cellranger-atac mkfastq, generate count matrix using cellranger count or cellranger-atac count, run cellranger vdj or feature-barcode extraction



	cumulus/smartseq2

	3 [https://portal.firecloud.org/?return=terra#methods/cumulus/smartseq2/3]

	Run Bowtie2 and RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	cumulus/cumulus

	7 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus/7]

	Run cumulus analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering, visualization, differential expression analysis, cell type annotation, etc.



	cumulus/cumulus_subcluster

	4 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_subcluster/4]

	Run subcluster analysis using cumulus



	cumulus/cumulus_hashing_cite_seq

	4 [https://portal.firecloud.org/?return=terra#methods/cumulus/cumulus_hashing_cite_seq/4]

	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - HTAPP v2








	WDL

	Snapshot

	Function





	regev/cellranger_mkfastq_count

	45

	Run Cell Ranger to extract FASTQ files and generate gene-count matrices for 10x genomics data



	scCloud/smartseq2

	5 [https://portal.firecloud.org/?return=terra#methods/scCloud/smartseq2/5]

	Run Bowtie2 and RSEM to generate gene-count matrices for SMART-Seq2 data from FASTQ files



	scCloud/scCloud

	14 [https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud/14]

	Run scCloud analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering and more



	scCloud/scCloud_subcluster

	9 [https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud_subcluster/9]

	Run subcluster analysis using scCloud



	scCloud/scCloud_hashing_cite_seq

	9 [https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud_hashing_cite_seq/9]

	Run scCloud for cell-hashing/nucleus-hashing/CITE-Seq analysis









Stable version - HTAPP v1








	WDL

	Snapshot

	Function





	regev/cellranger_mkfastq_count

	39

	Run Cell Ranger to extract FASTQ files and generate gene-count matrices for 10x genomics data



	scCloud/scCloud

	3 [https://portal.firecloud.org/?return=terra#methods/scCloud/scCloud/3]

	Run scCloud analysis module for variable gene selection, batch correction, PCA, diffusion map, clustering and more












          

      

      

    

  

    
      
          
            
  
Run Cell Ranger tools using cellranger_workflow

cellranger_workflow wraps Cell Ranger to process single-cell/nucleus RNA-seq, single-cell ATAC-seq and single-cell immune profiling data, and supports feature barcoding (cell/nucleus hashing, CITE-seq, Perturb-seq). It also provide routines to build cellranger references.


A general step-by-step instruction

This section mainly considers jobs starting from BCL files. If your job starts with FASTQ files, and only need to run cellranger count part, please refer to this subsection.


1. Import cellranger_workflow


Import cellranger_workflow workflow to your workspace.

See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The cellranger_workflow workflow is under Broad Methods Repository with name “cumulus/cellranger_workflow”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export cellranger_workflow workflow in the drop-down menu.







2. Upload sequencing data to Google bucket


Copy your sequencing output to your workspace bucket using gsutil [https://cloud.google.com/storage/docs/gsutil] (you already have it if you’ve installed Google cloud SDK) in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

[image: _images/google_bucket_link.png]
Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4





-m means copy in parallel, -r means copy the directory recursively, and gs://fc-e0000000-0000-0000-0000-000000000000 should be replaced by your own workspace Google bucket URL.





Note

If input is a folder of BCL files, users do not need to upload the whole folder to the Google bucket. Instead, they only need to upload the following files:

RunInfo.xml
RTAComplete.txt
runParameters.xml
Data/Intensities/s.locs
Data/Intensities/BaseCalls





If data are generated using MiSeq or NextSeq, the location files are inside lane subfloders L001 under Data/Intensities/. In addition, if users’ data only come from a subset of lanes (e.g. L001 and L002), users only need to upload lane subfolders from the subset (e.g. Data/Intensities/BaseCalls/L001, Data/Intensities/BaseCalls/L002 and Data/Intensities/L001, Data/Intensities/L002 if sequencer is MiSeq or NextSeq).



Alternatively, users can submit jobs through command line interface (CLI) using altocumulus, which will smartly upload BCL folders according to the above rules.


Note

Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab





The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil [https://cloud.google.com/storage/docs/gsutil] available by running:

reuse Google-Cloud-SDK










3. Prepare a sample sheet


3.1 Sample sheet format:

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to demultiplex flowcells and generate channel-specific count matrices. Note that Sample, Lane, and Index columns are defined exactly the same as in 10x’s simple CSV layout file.

A brief description of the sample sheet format is listed below (required column headers are shown in bold).







	Column

	Description





	Sample

	Contains sample names. Each 10x channel should have a unique sample name.



	Reference

	
Provides the reference genome used by Cell Ranger for each 10x channel.

The elements in the reference column can be either Google bucket URLs to reference tarballs or keywords such as GRCh38-2020-A.

A full list of available keywords is included in each of the following data type sections (e.g. sc/snRNA-seq) below.






	Flowcell

	
Indicates the Google bucket URLs of uploaded BCL folders.

If starts with FASTQ files, this should be Google bucket URLs of uploaded FASTQ folders.

The FASTQ folders should contain one subfolder for each sample in the flowcell with the sample name as the subfolder name.

Each subfolder contains FASTQ files for that sample.






	Lane

	
Tells which lanes the sample was pooled into.

Can be either single lane (e.g. 8) or a range (e.g. 7-8) or all (e.g. *).






	Index

	Sample index (e.g. SI-GA-A12).



	Chemistry

	Describes the 10x chemistry used for the sample. This column is optional.



	DataType

	
Describes the data type of the sample — rna, vdj, adt, crispr, atac.

rna refers to gene expression data (cellranger count),

vdj refers to V(D)J data (cellranger vdj),

adt refers to antibody tag data, which can be either CITE-Seq, cell-hashing, or nucleus-hashing,

crispr refers to Perturb-seq guide tag data,

atac refers to scATAC-Seq data (cellranger-atac count),

This column is optional and the default data type is rna.






	FeatureBarcodeFile

	
Google bucket urls pointing to feature barcode files for rna, adt and crispr data.

Features can be either targeted genes for targeted gene expression analysis, antibody for CITE-Seq, cell-hashing, nucleus-hashing or gRNA for Perburb-seq.

This column is only required for targeted gene expression analysis (rna), CITE-Seq, cell-hashing, nucleus-hashing (adt) and Perturb-seq (crispr).









The sample sheet supports sequencing the same 10x channels across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list it in multiple rows, with one flowcell per row. In the following example, we have 4 samples sequenced in two flowcells.

Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,1-2,SI-GA-A8,threeprime,rna
sample_2,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,3-4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,5-6,SI-GA-C8,fiveprime,rna
sample_4,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,7-8,SI-GA-D8,fiveprime,rna
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,1-2,SI-GA-A8,threeprime,rna
sample_2,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,3-4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,5-6,SI-GA-C8,fiveprime,rna
sample_4,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,7-8,SI-GA-D8,fiveprime,rna





3.2 Upload your sample sheet to the workspace bucket:


Example:

gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-0000-0000-000000000000/














4. Launch analysis


In your workspace, open cellranger_workflow in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Run workflow with inputs defined by file paths as below


[image: _images/single_workflow.png]



and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.







5. Notice: run cellranger mkfastq if you are non Broad Institute users


Non Broad Institute users that wish to run cellranger mkfastq must create a custom docker image that contains bcl2fastq.


See bcl2fastq instructions.










6. Run cellranger count only

Sometimes, users might want to perform demultiplexing locally and only run the count part on the cloud. This section describes how to only run the count part via cellranger_workflow.


	Copy your FASTQ files to the workspace using gsutil [https://cloud.google.com/storage/docs/gsutil] in your unix terminal.


You should upload folders of FASTQ files. The uploaded folder (for one flowcell) should contain one subfolder for each sample belong to the this flowcell. In addition, the subfolder name and the sample name in your sample sheet MUST be the same. Each subfolder contains FASTQ files for that sample. Please note that if your FASTQ file are downloaded from the Sequence Read Archive (SRA) from NCBI, you must rename your FASTQs to follow the bcl2fastq file naming conventions [https://kb.10xgenomics.com/hc/en-us/articles/115003802691-How-do-I-prepare-Sequence-Read-Archive-SRA-data-from-NCBI-for-Cell-Ranger-].

Example:

gsutil -m cp -r /foo/bar/fastq_path/K18WBC6Z4 gs://fc-e0000000-0000-0000-0000-000000000000/K18WBC6Z4_fastq










	Create a sample sheet following the similar structure as above, except the following differences:



	Flowcell column should list Google bucket URLs of the FASTQ folders for flowcells.


	Lane and Index columns are NOT required in this case.




Example:

Sample,Reference,Flowcell
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/K18WBC6Z4_fastq










	Set optional input run_mkfastq to false.











Single-cell and single-nucleus RNA-seq

To process sc/snRNA-seq data, follow the specific instructions below.


Sample sheet


	Reference column.


Pre-built scRNA-seq references are summarized below.







	Keyword

	Description





	GRCh38-2020-A

	Human GRCh38 (GENCODE v32/Ensembl 98)



	mm10-2020-A

	Mouse mm10 (GENCODE vM23/Ensembl 98)



	GRCh38_and_mm10-2020-A

	Human GRCh38 (GENCODE v32/Ensembl 98) and mouse mm10 (GENCODE vM23/Ensembl 98)



	GRCh38_v3.0.0

	Human GRCh38, cellranger reference 3.0.0, Ensembl v93 gene annotation



	hg19_v3.0.0

	Human hg19, cellranger reference 3.0.0, Ensembl v87 gene annotation



	mm10_v3.0.0

	Mouse mm10, cellranger reference 3.0.0, Ensembl v93 gene annotation



	GRCh38_and_mm10_v3.1.0

	Human (GRCh38) and mouse (mm10), cellranger references 3.1.0, Ensembl v93 gene annotations for both human and mouse



	hg19_and_mm10_v3.0.0

	Human (hg19) and mouse (mm10), cellranger reference 3.0.0, Ensembl v93 gene annotations for both human and mouse



	GRCh38_v1.2.0 or GRCh38

	Human GRCh38, cellranger reference 1.2.0, Ensembl v84 gene annotation



	hg19_v1.2.0 or hg19

	Human hg19, cellranger reference 1.2.0, Ensembl v82 gene annotation



	mm10_v1.2.0 or mm10

	Mouse mm10, cellranger reference 1.2.0, Ensembl v84 gene annotation



	GRCh38_and_mm10_v1.2.0 or GRCh38_and_mm10

	Human and mouse, built from GRCh38 and mm10 cellranger references, Ensembl v84 gene annotations are used



	GRCh38_and_SARSCoV2

	Human GRCh38 and SARS-COV-2 RNA genome, cellranger reference 3.0.0, generated by Carly Ziegler [http://shaleklab.com/author/carly/]. The SARS-COV-2 viral sequence and gtf are as described in [Kim et al. Cell 2020] [https://www.sciencedirect.com/science/article/pii/S0092867420304062] (https://github.com/hyeshik/sars-cov-2-transcriptome, BetaCov/South Korea/KCDC03/2020 based on NC_045512.2). The GTF was edited to include only CDS regions, and regions were added to describe the 5’ UTR (“SARSCoV2_5prime”), the 3’ UTR (“SARSCoV2_3prime”), and reads aligning to anywhere within the Negative Strand(“SARSCoV2_NegStrand”). Additionally, trailing A’s at the 3’ end of the virus were excluded from the SARSCoV2 fasta, as these were found to drive spurious viral alignment in pre-COVID19 samples.






Pre-built snRNA-seq references are summarized below.







	Keyword

	Description





	GRCh38_premrna_v3.0.0

	Human, introns included, built from GRCh38 cellranger reference 3.0.0, Ensembl v93 gene annotation, treating annotated transcripts as exons



	GRCh38_premrna_v1.2.0 or GRCh38_premrna

	Human, introns included, built from GRCh38 cellranger reference 1.2.0, Ensembl v84 gene annotation, treating annotated transcripts as exons



	mm10_premrna_v1.2.0 or mm10_premrna

	Mouse, introns included, built from mm10 cellranger reference 1.2.0, Ensembl v84 gene annotation, treating annotated transcripts as exons



	GRCh38_premrna_and_mm10_premrna_v1.2.0 or GRCh38_premrna_and_mm10_premrna

	Human and mouse, introns included, built from GRCh38_premrna_v1.2.0 and mm10_premrna_v1.2.0



	GRCh38_premrna_and_SARSCoV2

	Human, introns included, built from GRCh38_premrna_v3.0.0, and SARS-COV-2 RNA genome. This reference was generated by Carly Ziegler [http://shaleklab.com/author/carly/]. The SARS-COV-2 RNA genome is from [Kim et al. Cell 2020] [https://www.sciencedirect.com/science/article/pii/S0092867420304062] (https://github.com/hyeshik/sars-cov-2-transcriptome, BetaCov/South Korea/KCDC03/2020 based on NC_045512.2). Please see the description of GRCh38_and_SARSCoV2 above for details.











	Index column.


Put 10x single cell RNA-seq sample index set names [https://support.10xgenomics.com/single-cell-gene-expression/index/doc/specifications-sample-index-sets-for-single-cell-3] (e.g. SI-GA-A12) here.






	Chemistry column.


According to cellranger count’s documentation, chemistry can be







	Chemistry

	Explanation





	auto

	autodetection (default). If the index read has extra bases besides cell barcode and UMI, autodetection might fail. In this case, please specify the chemistry



	threeprime

	Single Cell 3′



	fiveprime

	Single Cell 5′



	SC3Pv1

	Single Cell 3′ v1



	SC3Pv2

	Single Cell 3′ v2



	SC3Pv3

	Single Cell 3′ v3. You should set cellranger version input parameter to >= 3.0.2



	SC5P-PE

	Single Cell 5′ paired-end (both R1 and R2 are used for alignment)



	SC5P-R2

	Single Cell 5′ R2-only (where only R2 is used for alignment)











	DataType column.


This column is optional with a default rna. If you want to put a value, put rna here.






	FetureBarcodeFile column.


Put target panel CSV file here for targeted expressiond data. Note that if a target panel CSV is present, cell ranger version must be >= 4.0.0.






	Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType,FeatureBarcodeFile
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,1-2,SI-GA-A8,threeprime,rna
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,1-2,SI-GA-A8,threeprime,rna
sample_2,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,5-6,SI-GA-C8,fiveprime,rna
sample_2,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,5-6,SI-GA-C8,fiveprime,rna
sample_3,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,3,SI-TT-A1,auto,rna,gs://fc-e0000000-0000-0000-0000-000000000000/immunology_v1.0_GRCh38-2020-A.target_panel.csv












Workflow input

For sc/snRNA-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cellranger count. Revalant workflow inputs are described below, with required inputs highlighted in bold.










	Name

	Description

	Example

	Default





	input_csv_file

	Sample Sheet (contains Sample, Reference, Flowcell, Lane, Index as required and Chemistry, DataType, FeatureBarcodeFile as optional)

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.csv”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/cellranger_output”

	Results are written under directory output_directory and will overwrite any existing files at this location.



	run_mkfastq

	If you want to run cellranger mkfastq

	true

	true



	run_count

	If you want to run cellranger count

	true

	true



	delete_input_bcl_directory

	If delete BCL directories after demux. If false, you should delete this folder yourself so as to not incur storage charges

	false

	false



	mkfastq_barcode_mismatches

	Number of mismatches allowed in matching barcode indices (bcl2fastq2 default is 1)

	0

	


	force_cells

	Force pipeline to use this number of cells, bypassing the cell detection algorithm, mutually exclusive with expect_cells

	6000

	


	expect_cells

	Expected number of recovered cells. Mutually exclusive with force_cells

	3000

	


	include_introns

	Turn this option on to also count reads mapping to intronic regions. With this option, users do not need to use pre-mRNA references. Note that if this option is set, cellranger_version must be >= 5.0.0.

	false

	false



	no_bam

	Turn this option on to disable BAM file generation. This option is only available if cellranger_version >= 5.0.0.

	false

	false



	secondary

	Perform Cell Ranger secondary analysis (dimensionality reduction, clustering, etc.)

	false

	false



	cellranger_version

	cellranger version, could be 5.0.1, 5.0.0, 4.0.0, 3.1.0, 3.0.2, or 2.2.0

	“5.0.1”

	“5.0.1”



	config_version

	config docker version used for processing sample sheets, could be 0.2, 0.1

	“0.2”

	“0.2”



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	cellranger_mkfastq_docker_registry

	Docker registry to use for cellranger mkfastq.
Default is the registry to which only Broad users have access.
See bcl2fastq for making your own registry.

	“gcr.io/broad-cumulus”

	“gcr.io/broad-cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of cpus to request for one node for cellranger mkfastq and cellranger count

	32

	32



	memory

	Memory size string for cellranger mkfastq and cellranger count

	“120G”

	“120G”



	mkfastq_disk_space

	Optional disk space in GB for mkfastq

	1500

	1500



	count_disk_space

	Disk space in GB needed for cellranger count

	500

	500



	preemptible

	Number of preemptible tries

	2

	2












Workflow output

See the table below for important sc/snRNA-seq outputs.








	Name

	Type

	Description





	output_fastqs_directory

	Array[String]

	A list of google bucket urls containing FASTQ files, one url per flowcell.



	output_count_directory

	Array[String]

	A list of google bucket urls containing count matrices, one url per sample.



	metrics_summaries

	File

	A excel spreadsheet containing QCs for each sample.



	output_web_summary

	Array[File]

	A list of htmls visualizing QCs for each sample (cellranger count output).



	count_matrix

	String

	gs url for a template count_matrix.csv to run Cumulus.













Feature barcoding assays (cell & nucleus hashing, CITE-seq and Perturb-seq)

cellranger_workflow can extract feature-barcode count matrices in CSV format for feature barcoding assays such as cell and nucleus hashing, CITE-seq, and Perturb-seq. For cell and nucleus hashing as well as CITE-seq, the feature refers to antibody. For Perturb-seq, the feature refers to guide RNA. Please follow the instructions below to configure cellranger_workflow.


Prepare feature barcode files


Prepare a CSV file with the following format: feature_barcode,feature_name.
See below for an example:

TTCCTGCCATTACTA,sample_1
CCGTACCTCATTGTT,sample_2
GGTAGATGTCCTCAG,sample_3
TGGTGTCATTCTTGA,sample_4





The above file describes a cell hashing application with 4 samples.

If cell hashing and CITE-seq data share a same sample index, you should concatenate hashing and CITE-seq barcodes together and add a third column indicating the feature type.
See below for an example:

TTCCTGCCATTACTA,sample_1,hashing
CCGTACCTCATTGTT,sample_2,hashing
GGTAGATGTCCTCAG,sample_3,hashing
TGGTGTCATTCTTGA,sample_4,hashing
CTCATTGTAACTCCT,CD3,citeseq
GCGCAACTTGATGAT,CD8,citeseq





Then upload it to your google bucket:

gsutil antibody_index.csv gs://fc-e0000000-0000-0000-0000-000000000000/antibody_index.csv











Sample sheet


	Reference column.


This column is not used for extracting feature-barcode count matrix. To be consistent, please put the reference for the associated scRNA-seq assay here.






	Index column.


The ADT/HTO index can be either Illumina index primer sequence (e.g. ATTACTCG, also known as D701), or 10x single cell RNA-seq sample index set names [https://support.10xgenomics.com/single-cell-gene-expression/index/doc/specifications-sample-index-sets-for-single-cell-3] (e.g. SI-GA-A12).

Note 1: All ADT/HTO index sequences (including 10x’s) should have the same length (8 bases). If one index sequence is shorter (e.g. ATCACG), pad it with P7 sequence (e.g. ATCACGAT).

Note 2: It is users’ responsibility to avoid index collision between 10x genomics’ RNA indexes (e.g. SI-GA-A8) and Illumina index sequences for used here (e.g. ATTACTCG).

Note 3: For NextSeq runs, please reverse complement the ADT/HTO index primer sequence (e.g. use reverse complement CGAGTAAT instead of ATTACTCG).






	Chemistry column.


The following keywords are accepted for Chemistry column:







	Chemistry

	Explanation





	SC3Pv3

	Single Cell 3′ v3 (default).



	SC3Pv2

	Single Cell 3′ v2



	fiveprime

	Single Cell 5′



	SC5P-PE

	Single Cell 5′ paired-end (both R1 and R2 are used for alignment)



	SC5P-R2

	Single Cell 5′ R2-only (where only R2 is used for alignment)











	DataType column.


Put adt here if the assay is CITE-seq, cell or nucleus hashing. Put crispr here if Perturb-seq.






	FetureBarcodeFile column.


Put Google Bucket URL of the feature barcode file here.






	Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType,FeatureBarcodeFile
sample_1_rna,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,1-2,SI-GA-A8,threeprime,rna
sample_1_adt,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,1-2,ATTACTCG,threeprime,adt,gs://fc-e0000000-0000-0000-0000-000000000000/antibody_index.csv
sample_2_adt,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,3-4,TCCGGAGA,SC3Pv3,adt,gs://fc-e0000000-0000-0000-0000-000000000000/antibody_index.csv
sample_3_crispr,GRCh38_v3.0.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,5-6,CGCTCATT,SC3Pv3,crispr,gs://fc-e0000000-0000-0000-0000-000000000000/crispr_index.csv









In the sample sheet above, despite the header row,



	First row describes the normal 3’ RNA assay;


	Second row describes its associated antibody tag data, which can from either a CITE-seq, cell hashing, or nucleus hashing experiment.


	Third row describes another tag data, which is in 10x genomics’ V3 chemistry. For tag and crispr data, it is important to explicitly state the chemistry (e.g. SC3Pv3).


	Last row describes one gRNA guide data for Perturb-seq (see crispr in DataType field).










Workflow input

For feature barcoding data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cumulus adt. Revalant workflow inputs are described below, with required inputs highlighted in bold.










	Name

	Description

	Example

	Default





	input_csv_file

	Sample Sheet (contains Sample, Reference, Flowcell, Lane, Index as required and Chemistry, DataType, FeatureBarcodeFile as optional)

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.csv”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/cellranger_output”

	


	run_mkfastq

	If you want to run cellranger mkfastq

	true

	true



	delete_input_directory

	If delete BCL directories after demux. If false, you should delete this folder yourself so as to not incur storage charges

	false

	false



	mkfastq_barcode_mismatches

	Number of mismatches allowed in matching barcode indices (bcl2fastq2 default is 1)

	0

	


	scaffold_sequence

	Scaffold sequence in sgRNA for Purturb-seq, only used for crispr data type. If it is “”, we assume guide barcode starts at position 0 of read 2

	“GTTTAAGAGCTAAGCTGGAA”

	“”



	max_mismatch

	Maximum hamming distance in feature barcodes for the adt task

	3

	3



	min_read_ratio

	Minimum read count ratio (non-inclusive) to justify a feature given a cell barcode and feature combination, only used for the adt task and crispr data type

	0.1

	0.1



	cellranger_version

	cellranger version, could be 4.0.0, 3.1.0, 3.0.2, 2.2.0

	“4.0.0”

	“4.0.0”



	cumulus_feature_barcoding_version

	Cumulus_feature_barcoding version for extracting feature barcode matrix. Version available: 0.3.0, 0.2.0.

	“0.3.0”

	“0.3.0”



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	mkfastq_docker_registry

	Docker registry to use for cellranger mkfastq.
Default is the registry to which only Broad users have access.
See bcl2fastq for making your own registry.

	“gcr.io/broad-cumulus”

	“gcr.io/broad-cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of cpus to request for one node for cellranger mkfastq

	32

	32



	memory

	Memory size string for cellranger mkfastq

	“120G”

	“120G”



	feature_memory

	Optional memory string for extracting feature count matrix

	“32G”

	“32G”



	mkfastq_disk_space

	Optional disk space in GB for mkfastq

	1500

	1500



	feature_disk_space

	Disk space in GB needed for extracting feature count matrix

	100

	100



	preemptible

	Number of preemptible tries

	2

	2












Parameters used for feature count matrix extraction

If the chemistry is V2, 10x genomics v2 cell barcode white list will be used, a hamming distance of 1 is allowed for matching cell barcodes, and the UMI length is 10.
If the chemistry is V3, 10x genomics v3 cell barcode white list will be used, a hamming distance of 0 is allowed for matching cell barcodes, and the UMI length is 12.

For Perturb-seq data, a small number of sgRNA protospace sequences will be sequenced ultra-deeply and we may have PCR chimeric reads. Therefore, we generate filtered feature count matrices as well in a data driven manner:


	First, plot the histogram of UMIs with certain number of read counts. The number of UMIs with x supporting reads decreases when x increases. We start from x = 1, and a valley between two peaks is detected if we find count[x] < count[x + 1] < count[x + 2]. We filter out all UMIs with < x supporting reads since they are likely formed due to chimeric reads.


	In addition, we also filter out barcode-feature-UMI combinations that have their read count ratio, which is defined as total reads supporting barcode-feature-UMI over total reads supporting barcode-UMI, no larger than min_read_ratio parameter set above.







Workflow outputs

See the table below for important outputs.








	Name

	Type

	Description





	output_fastqs_directory

	Array[String]

	A list of google bucket urls containing FASTQ files, one url per flowcell.



	output_count_directory

	Array[String]

	A list of google bucket urls containing feature-barcode count matrices, one url per sample.



	count_matrix

	String

	gs url for a template count_matrix.csv to run cumulus.






In addition, For each antibody tag or crispr tag sample, a folder with the sample ID is generated under output_directory. In the folder, two files — sample_id.csv and sample_id.stat.csv.gz — are generated.

sample_id.csv is the feature count matrix. It has the following format. The first line describes the column names: Antibody/CRISPR,cell_barcode_1,cell_barcode_2,...,cell_barcode_n. The following lines describe UMI counts for each feature barcode, with the following format: feature_name,umi_count_1,umi_count_2,...,umi_count_n.

sample_id.stat.csv.gz stores the gzipped sufficient statistics. It has the following format. The first line describes the column names: Barcode,UMI,Feature,Count. The following lines describe the read counts for every barcode-umi-feature combination.

If the feature barcode file has a third column, there will be two files for each feature type in the third column. For example, if hashing presents, sample_id.hashing.csv and sample_id.hashing.stat.csv.gz will be generated.

If data type is crispr, three additional files, sample_id.umi_count.pdf, sample_id.filt.csv and sample_id.filt.stat.csv.gz, are generated.

sample_id.umi_count.pdf plots number of UMIs against UMI with certain number of reads and colors UMIs with high likelihood of being chimeric in blue and other UMIs in red. This plot is generated purely based on number of reads each UMI has.

sample_id.filt.csv is the filtered feature count matrix. It has the same format as sample_id.csv.

sample_id.filt.stat.csv.gz is the filtered sufficient statistics. It has the same format as sample_id.stat.csv.gz.








Single-cell ATAC-seq

To process scATAC-seq data, follow the specific instructions below.


Sample sheet


	Reference column.


Pre-built scATAC-seq references are summarized below.







	Keyword

	Description





	GRCh38_atac_v1.2.0

	Human GRCh38, cellranger-atac reference 1.2.0



	mm10_atac_v1.2.0

	Mouse mm10, cellranger-atac reference 1.2.0



	hg19_atac_v1.2.0

	Human hg19, cellranger-atac reference 1.2.0



	b37_atac_v1.2.0

	Human b37 build, cellranger-atac reference 1.2.0



	GRCh38_and_mm10_atac_v1.2.0

	Human GRCh38 and mouse mm10, cellranger-atac reference 1.2.0



	hg19_and_mm10_atac_v1.2.0

	Human hg19 and mouse mm10, cellranger-atac reference 1.2.0



	GRCh38_atac_v1.1.0

	Human GRCh38, cellranger-atac reference 1.1.0



	mm10_atac_v1.1.0

	Mouse mm10, cellranger-atac reference 1.1.0



	hg19_atac_v1.1.0

	Human hg19, cellranger-atac reference 1.1.0



	b37_atac_v1.1.0

	Human b37 build, cellranger-atac reference 1.1.0



	GRCh38_and_mm10_atac_v1.1.0

	Human GRCh38 and mouse mm10, cellranger-atac reference 1.1.0



	hg19_and_mm10_atac_v1.1.0

	Human hg19 and mouse mm10, cellranger-atac reference 1.1.0











	Index column.


Put 10x single cell ATAC sample index set names [https://support.10xgenomics.com/single-cell-atac/sequencing/doc/specifications-sample-index-sets-for-single-cell-atac] (e.g. SI-NA-B1) here.






	Chemistry column.


This column is not used for scATAC-seq data. Put auto here as a placeholder if you decide to include the Chemistry column.






	DataType column.


Set it to atac.






	FetureBarcodeFile column.


Leave it blank for scATAC-seq.






	Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType
sample_atac,GRCh38_atac_v1.1.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9YB,*,SI-NA-A1,auto,atac












Workflow input

cellranger_workflow takes Illumina outputs as input and runs cellranger-atac mkfastq and cellranger-atac count. Please see the description of inputs below. Note that required inputs are shown in bold.









	Name

	Description

	Example

	Default





	input_csv_file

	Sample Sheet (contains Sample, Reference, Flowcell, Lane, Index as required and Chemistry, DataType, FeatureBarcodeFile as optional)

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.csv”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/cellranger_output”

	


	run_mkfastq

	If you want to run cellranger-atac mkfastq

	true

	true



	run_count

	If you want to run cellranger-atac count

	true

	true



	delete_input_directory

	If delete BCL directories after demux. If false, you should delete this folder yourself so as to not incur storage charges

	false

	false



	mkfastq_barcode_mismatches

	Number of mismatches allowed in matching barcode indices (bcl2fastq2 default is 1)

	0

	


	force_cells

	Force pipeline to use this number of cells, bypassing the cell detection algorithm

	6000

	


	cellranger_atac_version

	cellranger-atac version. Available options: 1.2.0, 1.1.0

	“1.2.0”

	“1.2.0”



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	atac_num_cpu

	Number of cpus for cellranger-atac count

	64

	64



	atac_memory

	Memory string for cellranger-atac count

	“57.6G”

	“57.6G”



	mkfastq_disk_space

	Optional disk space in GB for cellranger-atac mkfastq

	1500

	1500



	atac_disk_space

	Disk space in GB needed for cellranger-atac count

	500

	500



	preemptible

	Number of preemptible tries

	2

	2









Workflow output

See the table below for important scATAC-seq outputs.








	Name

	Type

	Description





	output_fastqs_directory

	Array[String]

	A list of google bucket urls containing FASTQ files, one url per flowcell.



	output_count_directory

	Array[String]

	A list of google bucket urls containing cellranger-atac count outputs, one url per sample.



	metrics_summaries

	File

	A excel spreadsheet containing QCs for each sample.



	output_web_summary

	Array[File]

	A list of htmls visualizing QCs for each sample (cellranger count output).



	count_matrix

	String

	gs url for a template count_matrix.csv to run cumulus.









Aggregate scATAC-Seq Samples

To aggregate multiple scATAC-Seq samples, follow the instructions below:


	Import cellranger_atac_aggr workflow. Please see Step 1 here, and the name of workflow is “cumulus/cellranger_atac_aggr”.


	Set the inputs of workflow. Please see the description of inputs below. Notice that required inputs are shown in bold:












	Name

	Description

	Example

	Default





	aggr_id

	Aggregate ID.

	“aggr_sample”

	


	input_counts_directories

	A string contains comma-separated URLs to directories of samples to be aggregated.

	“gs://fc-e0000000-0000-0000-0000-000000000000/data/sample1,gs://fc-e0000000-0000-0000-0000-000000000000/data/sample2”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/aggregate_result”

	


	genome

	The reference genome name used by Cell Ranger, can be either a keyword of pre-built genome, or a Google Bucket URL. See this table for the list of keywords of pre-built genomes.

	“GRCh38_atac_v1.2.0”

	


	normalize

	Sample normalization mode.
Options are: none, depth, or signal.

	“none”

	“none”



	secondary

	Perform secondary analysis (dimensionality reduction, clustering and visualization).

	false

	false



	dim_reduce

	Chose the algorithm for dimensionality reduction prior to clustering and tsne.
Options are: lsa, plsa, or pca.

	“lsa”

	“lsa”



	cellranger_atac_version

	Cell Ranger ATAC version to use.
Options: 1.2.0, 1.1.0.

	“1.2.0”

	“1.2.0”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-b”



	num_cpu

	Number of cpus to request for cellranger atac aggr.

	64

	64



	memory

	Memory size string for cellranger atac aggr.

	“57.6G”

	“57.6G”



	disk_space

	Disk space in GB needed for cellranger atac aggr.

	500

	500



	preemptible

	Number of preemptible tries.

	2

	2



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”







	Check out the output in output_directory/aggr_id folder, where output_directory and aggr_id are the inputs you set in Step 2.











Single-cell immune profiling

To process single-cell immune profiling (scIR-seq) data, follow the specific instructions below.


Sample sheet


	Reference column.


Pre-built scIR-seq references are summarized below.







	Keyword

	Description





	GRCh38_vdj_v5.0.0

	Human GRCh38 V(D)J sequences, cellranger reference 5.0.0, annotation built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf



	GRCm38_vdj_v5.0.0

	Mouse GRCm38 V(D)J sequences, cellranger reference 5.0.0, annotation built from Ensembl Mus_musculus.GRCm38.94.gtf



	GRCh38_vdj_v4.0.0

	Human GRCh38 V(D)J sequences, cellranger reference 4.0.0, annotation built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf



	GRCm38_vdj_v4.0.0

	Mouse GRCm38 V(D)J sequences, cellranger reference 4.0.0, annotation built from Ensembl Mus_musculus.GRCm38.94.gtf



	GRCh38_vdj_v3.1.0

	Human GRCh38 V(D)J sequences, cellranger reference 3.1.0, annotation built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf



	GRCm38_vdj_v3.1.0

	Mouse GRCm38 V(D)J sequences, cellranger reference 3.1.0, annotation built from Ensembl Mus_musculus.GRCm38.94.gtf



	GRCh38_vdj_v2.0.0 or GRCh38_vdj

	Human GRCh38 V(D)J sequences, cellranger reference 2.0.0, annotation built from Ensembl Homo_sapiens.GRCh38.87.chr_patch_hapl_scaff.gtf and vdj_GRCh38_alts_ensembl_10x_genes-2.0.0.gtf



	GRCm38_vdj_v2.2.0 or GRCm38_vdj

	Mouse GRCm38 V(D)J sequences, cellranger reference 2.2.0, annotation built from Ensembl Mus_musculus.GRCm38.90.chr_patch_hapl_scaff.gtf











	Index column.


Put 10x single cell V(D)J sample index set names [https://support.10xgenomics.com/single-cell-vdj/sequencing/doc/specifications-sample-index-sets-for-single-cell-vdj] (e.g. SI-GA-A3) here.






	Chemistry column.


This column is not used for scIR-seq data. Put fiveprime here as a placeholder if you decide to include the Chemistry column.






	DataType column.


Set it to vdj.






	FetureBarcodeFile column.


Leave it blank for scIR-seq.






	Example:

Sample,Reference,Flowcell,Lane,Index,Chemistry,DataType
sample_vdj,GRCh38_vdj_v3.1.0,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9ZZ,1,SI-GA-A1,fiveprime,vdj












Workflow input

For scIR-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cellranger vdj. Revalant workflow inputs are described below, with required inputs highlighted in bold.









	Name

	Description

	Example

	Default





	input_csv_file

	Sample Sheet (contains Sample, Reference, Flowcell, Lane, Index as required and Chemistry, DataType, FeatureBarcodeFile as optional)

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.csv”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/cellranger_output”

	


	run_mkfastq

	If you want to run cellranger mkfastq

	true

	true



	delete_input_directory

	If delete BCL directories after demux. If false, you should delete this folder yourself so as to not incur storage charges

	false

	false



	mkfastq_barcode_mismatches

	Number of mismatches allowed in matching barcode indices (bcl2fastq2 default is 1)

	0

	


	vdj_denovo

	Do not align reads to reference V(D)J sequences before de novo assembly

	false

	false



	vdj_chain

	Force the analysis to be carried out for a particular chain type. The accepted values are:



	“auto” for auto detection based on TR vs IG representation;


	“TR” for T cell receptors;


	“IG” for B cell receptors.








	“auto”

	“auto”



	cellranger_version

	cellranger version, could be 4.0.0, 3.1.0, 3.0.2, 2.2.0

	“4.0.0”

	“4.0.0”



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	cellranger_mkfastq_docker_registry

	Docker registry to use for cellranger mkfastq.
Default is the registry to which only Broad users have access.
See bcl2fastq for making your own registry.

	“gcr.io/broad-cumulus”

	“gcr.io/broad-cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of cpus to request for one node for cellranger mkfastq and cellranger vdj

	32

	32



	memory

	Memory size string for cellranger mkfastq and cellranger vdj

	“120G”

	“120G”



	mkfastq_disk_space

	Optional disk space in GB for mkfastq

	1500

	1500



	vdj_disk_space

	Disk space in GB needed for cellranger vdj

	500

	500



	preemptible

	Number of preemptible tries

	2

	2









Workflow output

See the table below for important scIR-seq outputs.








	Name

	Type

	Description





	output_fastqs_directory

	Array[String]

	A list of google bucket urls containing FASTQ files, one url per flowcell.



	output_vdj_directory

	Array[String]

	A list of google bucket urls containing vdj results, one url per sample.



	metrics_summaries

	File

	A excel spreadsheet containing QCs for each sample.



	output_web_summary

	Array[File]

	A list of htmls visualizing QCs for each sample (cellranger count output).



	count_matrix

	String

	gs url for a template count_matrix.csv to run cumulus.













Build Cell Ranger References

We provide routines wrapping Cell Ranger tools to build references for sc/snRNA-seq, scATAC-seq and single-cell immune profiling data.


Build references for sc/snRNA-seq

We provide a wrapper of cellranger mkref to build sc/snRNA-seq references. Please follow the instructions below.


1. Import cellranger_create_reference


Import cellranger_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The cellranger_workflow workflow is under Broad Methods Repository with name “cumulus/cellranger_create_reference”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export cellranger_create_reference workflow in the drop-down menu.







2. Upload requred data to Google Bucket


Required data may include input sample sheet, genome FASTA files and gene annotation GTF files.







3. Input sample sheet


If multiple species are specified, a sample sheet in CSV format is required. We describe the sample sheet format below, with required columns highlighted in bold:







	Column

	Description





	Genome

	Genome name



	Fasta

	Location to the genome assembly in FASTA/FASTA.gz format



	Genes

	Location to the gene annotation file in GTF/GTF.gz format



	Attributes

	Optional, A list of key:value pairs separated by ;. If set, cellranger mkgtf will be called to filter the user-provided GTF file. See 10x filter with mkgtf [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#mkgtf] for more details






Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

See below for an example for building
Example:

Genome,Fasta,Genes,Attributes
GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/GRCh38.fa.gz,gs://fc-e0000000-0000-0000-0000-000000000000/GRCh38.gtf.gz,gene_biotype:protein_coding;gene_biotype:lincRNA;gene_biotype:antisense
mm10,gs://fc-e0000000-0000-0000-0000-000000000000/mm10.fa.gz,gs://fc-e0000000-0000-0000-0000-000000000000/mm10.gtf.gz





If multiple species are specified, the reference will built under Genome names concatenated by ‘_and_’s. In the above example, the reference is stored under ‘GRCh38_and_mm10’.







4. Workflow input


Required inputs are highlighted in bold. Note that input_sample_sheet and input_fasta, input_gtf , genome and attributes are mutually exclusive.









	Name

	Description

	Example

	Default





	input_sample_sheet

	A sample sheet in CSV format allows users to specify more than 1 genomes to build references (e.g. human and mouse). If a sample sheet is provided, input_fasta, input_gtf, and attributes will be ignored.

	“gs://fc-e0000000-0000-0000-0000-000000000000/input_sample_sheet.csv”

	


	input_fasta

	Input genome reference in either FASTA or FASTA.gz format

	“gs://fc-e0000000-0000-0000-0000-000000000000/Homo_sapiens.GRCh38.dna.toplevel.fa.gz”

	


	input_gtf

	Input gene annotation file in either GTF or GTF.gz format

	“gs://fc-e0000000-0000-0000-0000-000000000000/Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf.gz”

	


	genome

	Genome reference name. New reference will be stored in a folder named genome

	refdata-cellranger-vdj-GRCh38-alts-ensembl-3.1.0

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/cellranger_reference”

	


	attributes

	A list of key:value pairs separated by ;. If this option is not None, cellranger mkgtf will be called to filter the user-provided GTF file. See 10x filter with mkgtf [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#mkgtf] for more details

	“gene_biotype:protein_coding;gene_biotype:lincRNA;gene_biotype:antisense”

	


	pre_mrna

	If we want to build pre-mRNA references, in which we use full length transcripts as exons in the annotation file. We follow 10x build Cell Ranger compatible pre-mRNA Reference Package [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references#premrna] to build pre-mRNA references

	true

	false



	ref_version

	reference version string

	Ensembl v94

	


	cellranger_version

	cellranger version, could be 4.0.0, 3.1.0, 3.0.2, or 2.2.0

	“4.0.0”

	“4.0.0”



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of cpus to request for one node for building indices

	1

	1



	memory

	Memory size in GB

	32

	32



	disk_space

	Optional disk space in GB

	100

	100



	preemptible

	Number of preemptible tries

	2

	2












5. Workflow output









	Name

	Type

	Description





	output_reference

	File

	Gzipped reference folder with name genome.tar.gz. We will also store a copy of the gzipped tarball under output_directory specified in the input.
















Build references for scATAC-seq

We provide a wrapper of cellranger-atac mkref to build scATAC-seq references. Please follow the instructions below.


1. Import cellranger_atac_create_reference


Import cellranger_atac_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The cellranger_workflow workflow is under Broad Methods Repository with name “cumulus/cellranger_atac_create_reference”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export cellranger_atac_create_reference workflow in the drop-down menu.







2. Upload required data to Google Bucket


Required data include config JSON file, genome FASTA file, gene annotation file (GTF or GFF3 format) and motif input file (JASPAR format).







3. Workflow input


Required inputs are highlighted in bold.









	Name

	Description

	Example

	Default





	genome

	Genome reference name. New reference will be stored in a folder named genome

	refdata-cellranger-atac-mm10-1.1.0

	


	config_json

	Configuration file defined in 10x genomics configuration file [https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/advanced/references#config]. Note that links to files in the JSON must be Google bucket URLs

	“gs://fc-e0000000-0000-0000-0000-000000000000/config.json”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/cellranger_atac_reference”

	


	cellranger_atac_version

	cellranger-atac version, could be: 1.2.0, 1.1.0

	“1.2.0”

	“1.2.0”



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	memory

	Memory size string for cellranger-atac mkref

	“32G”

	“32G”



	disk_space

	Optional disk space in GB

	100

	100



	preemptible

	Number of preemptible tries

	2

	2












4. Workflow output









	Name

	Type

	Description





	output_reference

	File

	Gzipped reference folder with name genome.tar.gz. We will also store a copy of the gzipped tarball under output_directory specified in the input.
















Build references for single-cell immune profiling data

We provide a wrapper of cellranger mkvdjref to build single-cell immune profiling references. Please follow the instructions below.


1. Import cellranger_vdj_create_reference


Import cellranger_vdj_create_reference workflow to your workspace.

See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The cellranger_workflow workflow is under Broad Methods Repository with name “cumulus/cellranger_vdj_create_reference”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export cellranger_vdj_create_reference workflow in the drop-down menu.







2. Upload requred data to Google Bucket


Required data include genome FASTA file and gene annotation file (GTF format).







3. Workflow input


Required inputs are highlighted in bold.









	Name

	Description

	Example

	Default





	input_fasta

	Input genome reference in either FASTA or FASTA.gz format

	“gs://fc-e0000000-0000-0000-0000-000000000000/Homo_sapiens.GRCh38.dna.toplevel.fa.gz”

	


	input_gtf

	Input gene annotation file in either GTF or GTF.gz format

	“gs://fc-e0000000-0000-0000-0000-000000000000/Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf.gz”

	


	genome

	Genome reference name. New reference will be stored in a folder named genome

	refdata-cellranger-vdj-GRCh38-alts-ensembl-3.1.0

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/cellranger_vdj_reference”

	


	ref_version

	reference version string

	Ensembl v94

	


	cellranger_version

	cellranger version, could be 4.0.0, 3.1.0, 3.0.2, or 2.2.0

	“4.0.0”

	“4.0.0”



	docker_registry

	Docker registry to use for cellranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	memory

	Memory size string for cellranger-atac mkref

	“32G”

	“32G”



	disk_space

	Optional disk space in GB

	100

	100



	preemptible

	Number of preemptible tries

	2

	2












4. Workflow output









	Name

	Type

	Description





	output_reference

	File

	Gzipped reference folder with name genome.tar.gz. We will also store a copy of the gzipped tarball under output_directory specified in the input.



















          

      

      

    

  

    
      
          
            
  
Run Space Ranger tools using spaceranger_workflow

spaceranger_workflow wraps Space Ranger to process spatial transcriptomics data.


A general step-by-step instruction

This section mainly considers jobs starting from BCL files. If your job starts with FASTQ files, and only need to run spaceranger count part, please refer to this subsection.


1. Import spaceranger_workflow


Import spaceranger_workflow workflow to your workspace.

See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The spaceranger_workflow workflow is under Broad Methods Repository with name “cumulus/spaceranger_workflow”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export spaceranger_workflow workflow in the drop-down menu.







2. Upload sequencing and image data to Google bucket


Copy your sequencing output to your workspace bucket using gsutil [https://cloud.google.com/storage/docs/gsutil] (you already have it if you’ve installed Google cloud SDK) in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

[image: _images/google_bucket_link.png]
Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4





-m means copy in parallel, -r means copy the directory recursively, and gs://fc-e0000000-0000-0000-0000-000000000000 should be replaced by your own workspace Google bucket URL.

Similarly, copy all images for spatial data to the same google bucket.





Note

If input is a folder of BCL files, users do not need to upload the whole folder to the Google bucket. Instead, they only need to upload the following files:

RunInfo.xml
RTAComplete.txt
runParameters.xml
Data/Intensities/s.locs
Data/Intensities/BaseCalls





If data are generated using MiSeq or NextSeq, the location files are inside lane subfloders L001 under Data/Intensities/. In addition, if users’ data only come from a subset of lanes (e.g. L001 and L002), users only need to upload lane subfolders from the subset (e.g. Data/Intensities/BaseCalls/L001, Data/Intensities/BaseCalls/L002 and Data/Intensities/L001, Data/Intensities/L002 if sequencer is MiSeq or NextSeq).



Alternatively, users can submit jobs through command line interface (CLI) using altocumulus, which will smartly upload BCL folders according to the above rules.


Note

Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab





The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil [https://cloud.google.com/storage/docs/gsutil] available by running:

reuse Google-Cloud-SDK










3. Prepare a sample sheet


3.1 Sample sheet format:

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to demultiplex flowcells and generate channel-specific count matrices. Note that Sample, Lane, and Index columns are defined exactly the same as in 10x’s simple CSV layout file.

A brief description of the sample sheet format is listed below (required column headers are shown in bold).







	Column

	Description





	Sample

	Contains sample names. Each 10x channel should have a unique sample name.



	Reference

	
Provides the reference genome used by Space Ranger for each 10x channel.

The elements in the reference column can be either Google bucket URLs to reference tarballs or keywords such as GRCh38-2020-A.

A full list of available keywords is included in each of the following data type sections (e.g. sc/snRNA-seq) below.






	Flowcell

	
Indicates the Google bucket URLs of uploaded BCL folders.

If starts with FASTQ files, this should be Google bucket URLs of uploaded FASTQ folders.

The FASTQ folders should contain one subfolder for each sample in the flowcell with the sample name as the subfolder name.

Each subfolder contains FASTQ files for that sample.






	Lane

	
Tells which lanes the sample was pooled into.

Can be either single lane (e.g. 8) or a range (e.g. 7-8) or all (e.g. *).






	Index

	Sample index (e.g. SI-GA-A12).



	Image

	Google bucket url for a brightfield tissue H&E image in .jpg or .tiff format. This column is mutually exclusive with DarkImage and ColorizedImage columns.



	DarkImage

	Google bucket urls for Multi-channel, dark-background fluorescence image as either a single, multi-layer .tiff file, multiple .tiff or .jpg files, or a pre-combined color .tiff or .jpg file. If multiple files are provided, please separate them by ‘;’. This column is mutually exclusive with Image and ColorizedImage columns.



	ColorizedImage

	Google bucket url for a color composite of one or more fluorescence image channels saved as a single-page, single-file color .tiff or .jpg. This column is mutually exclusive with Image and DarkImage columns.



	Slide

	Visium slide serial number. If both Slide and Area are empty, the –unknown-slide option would be set.



	Area

	Visium capture area identifier. Options for Visium are A1, B1, C1, D1. If both Slide and Area are empty, the –unknown-slide option would be set.



	SlideFile

	Slide layout file indicating capture spot and fiducial spot positions. Only required if internet access is not available.



	ReorientImages

	Use with automatic image alignment to specify that images may not be in canonical orientation with the hourglass in the top left corner of the image. The automatic fiducial alignment will attempt to align any rotation or mirroring of the image.



	LoupeAlignment

	Alignment file produced by the manual Loupe alignment step. Image column must be supplied in this case.



	TargetPanel

	Google bucket url for a target panel CSV for targeted gene expression analysis.






The sample sheet supports sequencing the same 10x channels across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list it in multiple rows, with one flowcell per row. In the following example, we have 2 samples sequenced in two flowcells.

Example:

Sample,Reference,Flowcell,Lane,Index,Image,Slide,Area
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,1-2,SI-GA-A8,gs://image/image1.tif,V19J25-123,A1
sample_2,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,3-4,SI-GA-B8,gs://image/image2.tif,V19J25-123,B1
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,1-2,SI-GA-A8,gs://image/image1.tif,V19J25-123,A1
sample_2,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2,3-4,SI-GA-B8,gs://image/image2.tif,V19J25-123,B1





3.2 Upload your sample sheet to the workspace bucket:


Example:

gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-0000-0000-000000000000/














4. Launch analysis


In your workspace, open spaceranger_workflow in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Run workflow with inputs defined by file paths as below


[image: _images/single_workflow.png]



and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.







5. Notice: run spaceranger mkfastq if you are non Broad Institute users


Non Broad Institute users that wish to run spaceranger mkfastq must create a custom docker image that contains bcl2fastq.


See bcl2fastq instructions.










6. Run spaceranger count only

Sometimes, users might want to perform demultiplexing locally and only run the count part on the cloud. This section describes how to only run the count part via spaceranger_workflow.


	Copy your FASTQ files to the workspace using gsutil [https://cloud.google.com/storage/docs/gsutil] in your unix terminal.


You should upload folders of FASTQ files. The uploaded folder (for one flowcell) should contain one subfolder for each sample belong to the this flowcell. In addition, the subfolder name and the sample name in your sample sheet MUST be the same. Each subfolder contains FASTQ files for that sample. Please note that if your FASTQ file are downloaded from the Sequence Read Archive (SRA) from NCBI, you must rename your FASTQs to follow the bcl2fastq file naming conventions [https://kb.10xgenomics.com/hc/en-us/articles/115003802691-How-do-I-prepare-Sequence-Read-Archive-SRA-data-from-NCBI-for-Cell-Ranger-].

Example:

gsutil -m cp -r /foo/bar/fastq_path/K18WBC6Z4 gs://fc-e0000000-0000-0000-0000-000000000000/K18WBC6Z4_fastq










	Create a sample sheet following the similar structure as above, except the following differences:



	Flowcell column should list Google bucket URLs of the FASTQ folders for flowcells.


	Lane and Index columns are NOT required in this case.




Example:

Sample,Reference,Flowcell,Image,Slide,Area
sample_1,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/K18WBC6Z4_fastq,gs://image/image1.tif,V19J25-123,A1










	Set optional input run_mkfastq to false.











Visium spatial transcriptomics data

To process spatial transcriptomics data, follow the specific instructions below.


Sample sheet


	Reference column.


Pre-built scRNA-seq references are summarized below.







	Keyword

	Description





	GRCh38-2020-A

	Human GRCh38 (GENCODE v32/Ensembl 98)



	mm10-2020-A

	Mouse mm10 (GENCODE vM23/Ensembl 98)



	GRCh38_and_mm10-2020-A

	Human GRCh38 (GENCODE v32/Ensembl 98) and mouse mm10 (GENCODE vM23/Ensembl 98)



	GRCh38_v3.0.0

	Human GRCh38, spaceranger reference 3.0.0, Ensembl v93 gene annotation



	hg19_v3.0.0

	Human hg19, cellranger reference 3.0.0, Ensembl v87 gene annotation



	mm10_v3.0.0

	Mouse mm10, cellranger reference 3.0.0, Ensembl v93 gene annotation



	GRCh38_and_mm10_v3.1.0

	Human (GRCh38) and mouse (mm10), cellranger references 3.1.0, Ensembl v93 gene annotations for both human and mouse



	hg19_and_mm10_v3.0.0

	Human (hg19) and mouse (mm10), cellranger reference 3.0.0, Ensembl v93 gene annotations for both human and mouse



	GRCh38_v1.2.0 or GRCh38

	Human GRCh38, cellranger reference 1.2.0, Ensembl v84 gene annotation



	hg19_v1.2.0 or hg19

	Human hg19, cellranger reference 1.2.0, Ensembl v82 gene annotation



	mm10_v1.2.0 or mm10

	Mouse mm10, cellranger reference 1.2.0, Ensembl v84 gene annotation



	GRCh38_and_mm10_v1.2.0 or GRCh38_and_mm10

	Human and mouse, built from GRCh38 and mm10 cellranger references, Ensembl v84 gene annotations are used






Pre-built snRNA-seq references are summarized below.







	Keyword

	Description





	GRCh38_premrna_v3.0.0

	Human, introns included, built from GRCh38 cellranger reference 3.0.0, Ensembl v93 gene annotation, treating annotated transcripts as exons



	GRCh38_premrna_v1.2.0 or GRCh38_premrna

	Human, introns included, built from GRCh38 cellranger reference 1.2.0, Ensembl v84 gene annotation, treating annotated transcripts as exons



	mm10_premrna_v1.2.0 or mm10_premrna

	Mouse, introns included, built from mm10 cellranger reference 1.2.0, Ensembl v84 gene annotation, treating annotated transcripts as exons



	GRCh38_premrna_and_mm10_premrna_v1.2.0 or GRCh38_premrna_and_mm10_premrna

	Human and mouse, introns included, built from GRCh38_premrna_v1.2.0 and mm10_premrna_v1.2.0
















Workflow input

For spatial data, spaceranger_workflow takes Illumina outputs and related images as input and runs spaceranger mkfastq and spaceranger count. Revalant workflow inputs are described below, with required inputs highlighted in bold.










	Name

	Description

	Example

	Default





	input_csv_file

	Sample Sheet (contains Sample, Reference, Flowcell, Lane, Index as required and Image, DarkImage, ColorizedImage, Slide, Area, SlideFile, ReorientImages, LoupeAlignment, TargetPanel as optional)

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.csv”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/spaceranger_output”

	Results are written under directory output_directory and will overwrite any existing files at this location.



	run_mkfastq

	If you want to run spaceranger mkfastq

	true

	true



	run_count

	If you want to run spaceranger count

	true

	true



	delete_input_bcl_directory

	If delete BCL directories after demux. If false, you should delete this folder yourself so as to not incur storage charges

	false

	false



	mkfastq_barcode_mismatches

	Number of mismatches allowed in matching barcode indices (bcl2fastq2 default is 1)

	0

	


	no_bam

	Turn this option on to disable BAM file generation.

	false

	false



	secondary

	Perform Space Ranger secondary analysis (dimensionality reduction, clustering, etc.)

	false

	false



	spaceranger_version

	spaceranger version, could be 1.2.1

	“1.2.1”

	“1.2.1”



	config_version

	config docker version used for processing sample sheets, could be 0.2, 0.1

	“0.2”

	“0.2”



	docker_registry

	Docker registry to use for spaceranger_workflow. Options:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	spaceranger_mkfastq_docker_registry

	Docker registry to use for spaceranger mkfastq.
Default is the registry to which only Broad users have access.
See bcl2fastq for making your own registry.

	“gcr.io/broad-cumulus”

	“gcr.io/broad-cumulus”



	zones

	Google cloud zones

	“us-central1-a us-west1-a”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of cpus to request for one node for spaceranger mkfastq and spaceranger count

	32

	32



	memory

	Memory size string for spaceranger mkfastq and spaceranger count

	“120G”

	“120G”



	mkfastq_disk_space

	Optional disk space in GB for mkfastq

	1500

	1500



	count_disk_space

	Disk space in GB needed for spaceranger count

	500

	500



	preemptible

	Number of preemptible tries

	2

	2












Workflow output

See the table below for important sc/snRNA-seq outputs.








	Name

	Type

	Description





	output_fastqs_directory

	Array[String]

	A list of google bucket urls containing FASTQ files, one url per flowcell.



	output_count_directory

	Array[String]

	A list of google bucket urls containing count matrices, one url per sample.



	metrics_summaries

	File

	A excel spreadsheet containing QCs for each sample.



	output_web_summary

	Array[File]

	A list of htmls visualizing QCs for each sample (spaceranger count output).













Build Space Ranger References

Reference built by Cell Ranger for sc/snRNA-seq should be compatible with Space Ranger. For more details on building references uing Cell Ranger, please refer to here.







          

      

      

    

  

    
      
          
            
  
Run STARsolo to generate gene-count matrices from FASTQ files

This star_solo workflow generates gene-count matrices from FASTQ data using STARsolo.


Prepare input data and import workflow


1. Run cellranger_workflow to generate FASTQ data


You can skip this step if your data are already in FASTQ format.

Otherwise, for 10X data, you need to first run cellranger_workflow to generate FASTQ files from BCL raw data for each sample. Please follow cellranger_workflow manual.

Notice that you should set run_mkfastq to true to get FASTQ output. You can also set run_count to false to skip Cell Ranger count step.

For Non-Broad users, you’ll need to build your own docker for bcl2fastq step. Instructions are here.







2. Import star_solo


Import star_solo workflow to your workspace.

See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The star_solo workflow is under Broad Methods Repository with name “cumulus/star_solo”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export star_solo workflow in the drop-down menu.







3. Prepare a sample sheet


3.1 Sample sheet format:

The sample sheet for star_solo workflow should be in TSV format, i.e. columns are separated by tabs (NOT commas). Please note that the columns in the TSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to identify flowcells and generate sample/channel-specific count matrices.

A brief description of the sample sheet format is listed below (required column headers are shown in bold).







	Column

	Description





	Sample

	Contains sample names. Each sample or 10X channel should have a unique sample name.



	Flowcells

	Indicates the Google bucket URLs of folder(s) holding FASTQ files of this sample.






For 10X data, the sample sheet supports sequencing the same 10X channel across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list all of its flowcells in a comma-seperated way. In the following example, we have 2 samples sequenced in two flowcells.

Example:

Sample  Flowcells
sample_1        gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4/sample_1_fastqs,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2/sample_1_fastqs
sample_2        gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4/sample_2_fastqs





Alternatively, if you want to specify Read 1 and 2 FASTQ files yourself, you should prepare the sample sheet of the following format:

Sample  R1      R2
sample_1        gs://your-bucket/sample_1_L001_R1.fastq.gz,gs://your-bucket/sample_1_L002_R1.fastq.gz   gs://your-bucket/sample_1_L001_R2.fastq.gz,gs://your-bucket/sample_1_L002_R2.fastq.gz
sample_2        gs://your-bucket/sample_2_L001_R1.fastq.gz      gs://your-bucket/sample_2_L001_R2.fastq.gz





where FASTQ files in R1 and R2 should be in one-to-one correspondence if the sample has multiple R1 FASTQ files.

3.2 Upload your sample sheet to the workspace bucket:

Use gsutil [https://cloud.google.com/storage/docs/gsutil] (you already have it if you’ve installed Google cloud SDK) in your unix terminal to upload your sample sheet to workspace bucket.

Example:

gsutil cp /foo/bar/projects/sample_sheet.tsv gs://fc-e0000000-0000-0000-0000-000000000000/











4. Launch analysis


In your workspace, open star_solo in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Process single workflow from files as below


[image: _images/single_workflow.png]



and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.











Workflow inputs

Below are inputs for count workflow. Notice that required inputs are in bold.









	Name

	Description

	Example

	Default





	input_tsv_file

	Input TSV sample sheet describing metadata of each sample.

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.tsv”

	


	genome

	Genome reference. It can be either of the following two formats:



	String. Pre-built genome reference. Currently support: GRCh38, mm10.


	Google bucket URL of a custom reference, must be a .tar.gz file.








	
“GRCh38”,

or “gs://user-bucket/starsolo.tar.gz”




	


	chemistry

	Chemistry name. Available options: “tenX_v3” (for 10X V3 chemistry), “tenX_v2” (for 10X V2 chemistry), “DropSeq”, and “SeqWell”.

	“tenX_v3”

	


	output_directory

	GS URL of output directory.

	“gs://fc-e0000000-0000-0000-0000-000000000000/count_result”

	


	docker_registry

	Docker registry to use:



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones to consider for execution.

	“us-east1-d us-west1-a us-west1-b”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of CPUs to request for count per sample.

	32

	32



	disk_space

	Disk space in GB needed for count per sample.

	500

	500



	memory

	Memory size in GB needed for count per sample.

	120

	120



	preemptible

	Number of maximum preemptible tries allowed.

	2

	2



	star_version

	STAR version to use. Currently only support 2.7.6a.

	“2.7.6a”

	“2.7.6a”



	config_version

	Version of docker image to run configuration on the sample sheet. Currently only has version “0.1”.

	“0.1”

	“0.1”









Workflow outputs

See the table below for star_solo workflow outputs.








	Name

	Type

	Description





	output_folder

	String

	Google Bucket URL of output directory. Within it, each folder is for one sample in the input sample sheet.












          

      

      

    

  

    
      
          
            
  
Demultiplex genetic-pooling/cell-hashing/nucleus-hashing sc/snRNA-Seq data

This demultiplexing workflow generates gene-count matrices from cell-hashing/nucleus-hashing/genetic-pooling data by demultiplexing.

In the workflow, demuxEM is used for analyzing cell-hashing/nucleus-hashing data, while souporcell and demuxlet are for genetic-pooling data.


Prepare input data and import workflow


1. Run cellranger_workflow


To demultiplex, you’ll need raw gene count and hashtag matrices for cell-hashing/nucleus-hashing data, or raw gene count matrices and genome BAM files for genetic-pooling data. You can generate these data by running the cellranger_workflow.

Please refer to the cellranger_workflow tutorial for details.

When finished, you should be able to find the raw gene count matrix (e.g. raw_gene_bc_matrices_h5.h5), hashtag matrix (e.g. sample_1_ADT.csv) / genome BAM file (e.g. possorted_genome_bam.bam) for each sample.







2. Import demultiplexing

Import demultiplexing workflow to your workspace.


See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The demultiplexing workflow is under Broad Methods Repository with name “cumulus/demultiplexing”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export demultiplexing workflow in the drop-down menu.







3. Prepare a sample sheet


3.1 Sample sheet format:

Create a sample sheet, sample_sheet_demux.csv, which describes the metadata for each pair of RNA and hashtag data. A brief description of the sample sheet format is listed below (required column headers are shown in bold).







	Column

	Description





	OUTNAME

	Output name for one pair of RNA and hashtag data. Must be unique per pair.



	RNA

	Google bucket url to the raw gene count matrix generated in Step 1.



	TagFile/ADT

	Google bucket url to the hashtag file generated in Step 1. The column name can be either TagFile or ADT, where ADT is to be backward compatible with sample sheets working with cumulus/cumulus_hashing_cite_seq workflow.



	TYPE

	Assay type, which can be cell-hashing, nucleus-hashing, or genetic-pooling.



	Genotype

	Google bucket url to the reference genotypes in vcf.gz format. This column is not required in the following cases:



	When TYPE is cell-hashing or nucleus-hashing;


	When TYPE is genetic-pooling, demultiplexing_algorithm input is souporcell, and user wish to run in de novo mode without reference genotypes, and don’t need to rename cluster names by information from a known genotype vcf file.













Example:

OUTNAME,RNA,TagFile,TYPE,Genotype
sample_1,gs://exp/data_1/raw_gene_bc_matrices_h5.h5,gs://exp/data_1/sample_1_ADT.csv,cell-hashing
sample_2,gs://exp/data_2/raw_gene_bc_matrices_h5.h5,gs://exp/data_2/sample_2_ADT.csv,nucleus-hashing
sample_3,gs://exp/data_3/raw_gene_bc_matrices_h5.h5,gs://exp/data_3/possorted_genome_bam.bam,genetic-pooling
sample_4,gs://exp/data_4/raw_gene_bc_matrices_h5.h5,gs://exp/data_4/possorted_genome_bam.bam,genetic-pooling,gs://exp/variants/ref_genotypes.vcf.gz





3.2 Upload your sample sheet to the workspace bucket:

Use gsutil [https://cloud.google.com/storage/docs/gsutil] (you already have it if you’ve installed Google Cloud SDK) in your unix terminal to upload your sample sheet to workspace bucket.

Example:

gsutil cp /foo/bar/projects/sample_sheet_demux.csv gs://fc-e0000000-0000-0000-0000-000000000000/















Workflow inputs

Below are inputs for demultiplexing workflow. We’ll first introduce global inputs, and then inputs for each of the demultiplexing tools. Notice that required inputs are in bold.


global inputs









	Name

	Description

	Example

	Default





	input_sample_sheet

	Input CSV file describing metadata of RNA and hashtag data pairing.

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet_demux.csv”

	


	output_directory

	This is the output directory (gs url + path) for all results. There will be one folder per RNA-hashtag data pair under this directory.

	“gs://fc-e0000000-0000-0000-0000-000000000000/demux_output”

	


	genome

	Reference genome name. You should choose one from this genome reference list.

	“GRCh38”

	


	demultiplexing_algorithm

	demultiplexing algorithm to use for genetic-pooling data. Options:



	“souporcell”: Use souporcell [https://github.com/wheaton5/souporcell], a reference-genotypes-free algorithm for demultiplexing droplet scRNA-Seq data.


	“demuxlet”: Use demuxlet [https://github.com/statgen/demuxlet], a canonical algorithm for demultiplexing droplet scRNA-Seq data.








	“souporcell”

	“souporcell”



	min_num_genes

	Only demultiplex cells/nuclei with at least <min_num_genes> expressed genes

	100

	100



	docker_registry

	Docker registry to use. Notice that docker image for Bustools is seperate.



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	config_version

	Version of config docker image to use. This docker is used for parsing the input sample sheet for downstream execution. Available options: 0.2, 0.1.

	“0.2”

	“0.2”



	zones

	Google cloud zones to consider for execution.

	“us-east1-d us-west1-a us-west1-b”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	preemptible

	Number of maximum preemptible tries allowed.

	2

	2









demuxEM inputs









	Name

	Description

	Example

	Default





	demuxEM_alpha_on_samples

	demuxEM parameter. The Dirichlet prior concentration parameter (alpha) on samples. An alpha value < 1.0 will make the prior sparse.

	0.0

	0.0



	demuxEM_min_num_umis

	demuxEM parameter. Only demultiplex cells/nuclei with at least <demuxEM_min_num_umis> of UMIs.

	100

	100



	demuxEM_min_signal_hashtag

	demuxEM parameter. Any cell/nucleus with less than <demuxEM_min_signal_hashtag> hashtags from the signal will be marked as unknown.

	10.0

	10.0



	demuxEM_random_state

	demuxEM parameter. The random seed used in the KMeans algorithm to separate empty ADT droplets from others.

	0

	0



	demuxEM_generate_diagnostic_plots

	demuxEM parameter. If generate a series of diagnostic plots, including the background/signal between HTO counts, estimated background probabilities, HTO distributions of cells and non-cells, etc.

	true

	true



	demuxEM_generate_gender_plot

	demuxEM parameter. If generate violin plots using gender-specific genes (e.g. Xist). <demuxEM_generate_gender_plot> is a comma-separated list of gene names

	“XIST”

	


	demuxEM_version

	demuxEM version to use. Currently only support “0.1.5”.

	“0.1.5”

	“0.1.5”



	demuxEM_num_cpu

	demuxEM parameter. Number of CPUs to request for demuxEM per pair.

	8

	8



	demuxEM_memory

	demuxEM parameter. Memory size (integer) in GB needed for demuxEM per pair.

	10

	10



	demuxEM_disk_space

	demuxEM parameter. Disk space (integer) in GB needed for demuxEM per pair.

	20

	20









souporcell inputs









	Name

	Description

	Example

	Default





	souporcell_version

	souporcell version to use. Available versions: “2020.07”, “2020.03”.

	“2020.07”

	“2020.07”



	souporcell_de_novo_mode

	
souporcell parameter.

If true, run souporcell in de novo mode without reference genotypes; and if a reference genotype vcf file is provided in the sample sheet, use it only for matching the cluster labels computed by souporcell.

If false, run souporcell with --known_genotypes option using the reference genotype vcf file specified in sample sheet, and souporcell_rename_donors is required in this case.




	true

	true



	souporcell_num_clusters

	
souporcell parameter. Number of expected clusters when doing clustering.

This needs to be set when running souporcell.




	8

	


	souporcell_rename_donors

	
souporcell parameter. A comma-separated list of donor names for renaming clusters achieved by souporcell.

By default, the resulting donors are Donor1, Donor2, …




	“CB1,CB2,CB3,CB4”

	


	souporcell_num_cpu

	souporcell parameter. Number of CPUs to request for souporcell per pair.

	32

	32



	souporcell_memory

	souporcell parameter. Memory size (integer) in GB needed for souporcell per pair.

	120

	120



	souporcell_disk_space

	souporcell parameter. Disk space (integer) in GB needed for souporcell per pair.

	500

	500









demuxlet inputs









	Name

	Description

	Example

	Default





	demuxlet_version

	demuxlet version to use. Currently only support “0.1b”.

	“0.1b”

	“0.1b”



	demuxlet_memory

	demuxlet parameter. Memory size (integer) in GB needed for demuxlet per pair.

	10

	10



	demuxlet_disk_space

	
demuxlet parameter. Disk space size (integer) in GB needed for demuxlet per pair.

Notice that the overall disk space for demuxlet is this disk space plus the size of provided reference genotypes file in the sample sheet.




	2

	2













Workflow outputs

See the table below for demultiplexing workflow outputs.








	Name

	Type

	Description





	output_folders

	Array[String]

	A list of Google Bucket URLs of the output folders. Each folder is associated with one RNA-hashtag pair in the given sample sheet.



	output_zarr_files

	Array[File]

	A list of demultiplexed RNA count matrices in zarr format. Each zarr file is associated with one RNA-hashtag pair in the given sample sheet. Please refere to section load demultiplexing results into Python and R for its structure.






In the output subfolder of each cell-hashing/nuclei-hashing RNA-hashtag data pair, you can find the following files:







	Name

	Description





	output_name_demux.zarr.zip

	Demultiplexed RNA count matrix in zarr format. Please refer to section load demultiplexing results into Python and R for its structure.



	output_name.out.demuxEM.zarr.zip

	
RNA expression matrix with demultiplexed sample identities in zarr format.

To load this file into Python, you need to first install Pegasusio [https://pypi.org/project/pegasusio/] on your local machine. Then use import pegasusio as io; data = io.read_input("output_name.out.demuxEM.zarr.zip") in Python environment.

It contains 2 UnimodalData objects: one with key name suffix -hashing is the hashtag count matrix, the other one with key name suffix -rna is the demultiplexed RNA count matrix.

To load the hashtag count matrix, type hash_data = data.get_data('<genome>-hashing'), where <genome> is the genome name of the data. The count matrix is hash_data.X; cell barcode attributes are stored in hash_data.obs; sample names are in hash_data.var_names. Moreover, the estimated background probability regarding hashtags is in hash_data.uns['background_probs'].

To load the RNA matrix, type rna_data = data.get_data('<genome>-rna'), where <genome> is the genome name of the data. It only contains cells which have estimated sample assignments. The count matrix is rna_data.X. Cell barcode attributes are stored in rna_data.obs: rna_data.obs['demux_type'] stores the estimated droplet types (singlet/doublet/unknown) of cells; rna_data.obs['assignment'] stores the estimated hashtag(s) that each cell belongs to. Moreover, for cell-hashing/nucleus-hashing data, you can find estimated sample fractions (sample1, sample2, …, samplen, background) for each droplet in rna_data.obsm['raw_probs'].






	output_name.ambient_hashtag.hist.png

	Optional output. A histogram plot depicting hashtag distributions of empty droplets and non-empty droplets.



	output_name.background_probabilities.bar.png

	Optional output. A bar plot visualizing the estimated hashtag background probability distribution.



	output_name.real_content.hist.png

	Optional output. A histogram plot depicting hashtag distributions of not-real-cells and real-cells as defined by total number of expressed genes in the RNA assay.



	output_name.rna_demux.hist.png

	Optional output. A histogram plot depicting RNA UMI distribution for singlets, doublets and unknown cells.



	output_name.gene_name.violin.png

	Optional outputs. Violin plots depicting gender-specific gene expression across samples. We can have multiple plots if a gene list is provided in demuxEM_generate_gender_plot field of cumulus_hashing_cite_seq inputs.






In the output subfolder of each genetic-pooling RNA-hashtag data pair generated by souporcell, you can find the following files:







	Name

	Description





	output_name_demux.zarr.zip

	Demultiplexed RNA count matrix in zarr format. Please refer to section load demultiplexing results into Python and R for its structure.



	clusters.tsv

	Inferred droplet type and cluster assignment for each cell barcode.



	cluster_genotypes.vcf

	Inferred genotypes for each cluster.



	match_donors.log

	Log of matching donors step, with information of donor matching included.






In the output subfolder of each genetic-pooling RNA-hashtag data pair generated by demuxlet, you can find the following files:







	Name

	Description





	output_name_demux.zarr.zip

	Demultiplexed RNA count matrix in zarr format. Please refer to section load demultiplexing results into Python and R for its structure.



	output_name.best

	Inferred droplet type and cluster assignment for each cell barcode.











Load demultiplexing results into Python and R

To load demultiplexed RNA count matrix into Python, you need to install Python package pegasusio [https://pypi.org/project/pegasusio/] first. Then follow the codes below:

import pegasusio as io
data = io.read_input('output_name_demux.zarr.zip')





Once you load the data object, you can find estimated droplet types (singlet/doublet/unknown) in data.obs['demux_type']. Notices that there are cell barcodes with no sample associated, and therefore have no droplet type.

You can also find estimated sample assignments in data.obs['assignment'].

For cell-hashing/nucleus-hashing data, if one sample name can correspond to multiple feature barcodes, each feature barcode is assigned to a unique sample name, and this deduplicated sample assignment results are in data.obs['assignment.dedup'].

To load the results into R, you need to install R package reticulate in addition to Python package pegasusio. Then follow the codes below:

library(reticulate)
ad <- import("pegasusio", convert = FALSE)
data <- ad$read_input("output_name_demux.zarr.zip")





Results are in data$obs['demux_type'], data$obs['assignment'], and similarly as above, for cell-hashing/nucleus-hashing data, you’ll find an additional field data$obs['assignment.dedup'] for deduplicated sample assignment in the case that one sample name can correspond to multiple feature barcodes.







          

      

      

    

  

    
      
          
            
  
Run Cumulus for sc/snRNA-Seq data analysis


Run Cumulus analysis


Prepare Input Data


Case One: Sample Sheet

Follow the steps below to run cumulus on Terra [https://app.terra.bio/].


	Create a sample sheet, count_matrix.csv, which describes the metadata for each sample count matrix. The sample sheet should at least contain 2 columns — Sample and Location. Sample refers to sample names and Location refers to the location of the channel-specific count matrix in either of






	10x format with v2 chemistry. For example, gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_1/raw_gene_bc_matrices_h5.h5.


	10x format with v3 chemistry. For example, gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_1/raw_feature_bc_matrices.h5.


	Drop-seq format. For example, gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_2/sample_2.umi.dge.txt.gz.


	Matrix Market format (mtx). If the input is mtx format, location should point to a mtx file with a file suffix of either ‘.mtx’ or ‘.mtx.gz’. In addition, the associated barcode and gene tsv/txt files should be located in the same folder as the mtx file. For example, if we generate mtx file using BUStools, we set Location to gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/mm10/cells_x_genes.mtx. We expect to see cells_x_genes.barcodes.txt and cellx_x_genes.genes.txt under folder gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/mm10/. We support loading mtx files in HCA DCP, 10x Genomics V2/V3, SCUMI, dropEST and BUStools format. Users can also set Location to a folder gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/hg19_and_mm10/. This folder must be generated by Cell Ranger for multi-species samples and we expect one subfolder per species (e.g. ‘hg19’) and each subfolder should contain mtx file, barcode file, gene name file as generated by Cell Ranger.


	csv format. If it is HCA DCP csv format, we expect the expression file has the name of expression.csv. In addition, we expect that  cells.csv and genes.csv files are located under the same folder as the expression.csv. For example, gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_3/.


	tsv or loom format.







Additionally, an optional Reference column can be used to select samples generated from a same reference (e.g. mm10). If the count matrix is in either DGE, mtx, csv, tsv, or loom format, the value in this column will be used as the reference since the count matrix file does not contain reference name information. The only exception is mtx format. If users do not provide a Reference column, we will use the basename of the folder containing the mtx file as its reference. In addition, the Reference column can be used to aggregate count matrices generated from different genome versions or gene annotations together under a unified reference. For example, if we have one matrix generated from mm9 and the other one generated from mm10, we can write mm9_10 for these two matrices in their Reference column. Pegasus will change their references to mm9_10 and use the union of gene symbols from the two matrices as the gene symbols of the aggregated matrix. For HDF5 files (e.g. 10x v2/v3), the reference name contained in the file does not need to match the value in this column. In fact, we use this column to rename references in HDF5 files. For example, if we have two HDF files, one generated from mm9 and the other generated from mm10. We can set these two files’ Reference column value to mm9_10, which will rename their reference names into mm9_10 and the aggregated matrix will contain all genes from either mm9 or mm10. This renaming feature does not work if one HDF5 file contain multiple references (e.g. mm10 and GRCh38).

You are free to add any other columns and these columns will be used in selecting channels for futher analysis. In the example below, we have Source, which refers to the tissue of origin, Platform, which refers to the sequencing platform, Donor, which refers to the donor ID, and Reference, which refers to the reference genome.


Example:

Sample,Source,Platform,Donor,Reference,Location
sample_1,bone_marrow,NextSeq,1,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_1/raw_gene_bc_matrices_h5.h5
sample_2,bone_marrow,NextSeq,2,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_2/raw_gene_bc_matrices_h5.h5
sample_3,pbmc,NextSeq,1,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_3/raw_feature_bc_matrices.h5
sample_4,pbmc,NextSeq,2,GRCh38,gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_4/raw_feature_bc_matrices.h5





If you ran cellranger_workflow previously, you should already have a template count_matrix.csv file that you can modify from generate_count_config’s outputs.





	Upload your sample sheet to the workspace.


Example:

gsutil cp /foo/bar/projects/my_count_matrix.csv gs://fc-e0000000-0000-0000-0000-000000000000/





where /foo/bar/projects/my_count_matrix.csv is the path to your sample sheet in local machine, and gs://fc-e0000000-0000-0000-0000-000000000000/ is the location on Google bucket to hold it.






	Import cumulus workflow to your workspace.


See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The cumulus workflow is under Broad Methods Repository with name “cumulus/cumulus”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export cumulus workflow in the drop-down menu.






	In your workspace, open cumulus in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below


[image: _images/single_workflow.png]



and click the SAVE button.








Case Two: Single File

Alternatively, if you only have one single count matrix for analysis, you can go without sample sheets. Cumulus currently supports the following formats:


	10x genomics v2/v3 format (hdf5);


	Drop-seq dge format;


	csv (no HCA DCP format), tsv or loom formats.




Simply upload your data to the Google Bucket of your workspace, and specify its URL in input_file field of Cumulus’ global inputs (see below). For hdf5 files, there is no need to specify genome names. For other formats, you can specify genome name in considered_refs field in cluster inputs; otherwise, default name '' will be used.

In this case, the aggregate_matrices step will be skipped.




Case Three: Multiple samples without aggregation

Sometimes, you may want to run Cumulus on multiple samples simultaneously. This is different from Case one, because samples are analyzed separately without aggregation.


	To do it, you need to first create a data table [https://support.terra.bio/hc/en-us/articles/360025758392] on Terra. An example TSV file is the following:

entity:cumulus_test_id  input_h5
5k_pbmc_v3  gs://fc-e0000000-0000-0000-0000-000000000000/5k_pbmc_v3/raw_feature_bc_matrix.h5
1k_pbmc_v3  gs://fc-e0000000-0000-0000-0000-000000000000/1k_pbmc_v3/raw_feature_bc_matrix.h5









You are free to add more columns, but sample ids and URLs to RNA count matrix files are required. I’ll use this example TSV file for the rest of steps in this case.


	Upload your TSV file to your workspace. Open the DATA tab on your workspace. Then click the upload button on left TABLE panel, and select the TSV file above. When uploading is done, you’ll see a new data table with name “cumulus_test”:


[image: _images/data_table.png]





	Import cumulus workflow to your workspace as in Case one. Then open cumulus in WORKFLOW tab. Select Run workflow(s) with inputs defined by data table, and choose cumulus_test from the drop-down menu.


[image: _images/multi_samples.png]





	In the input field, specify:






	input_file: Type this.input_h5, where this refers to the data table selected, and input_h5 is the column name in this data table for RNA count matrices.


	output_directory: Type Google bucket URL for the main output folder. For example, gs://fc-e0000000-0000-0000-0000-000000000000/cumulus_results.


	output_name: Type this.cumulus_test_id, where cumulus_test_id is the column name in data table for sample ids.







An example is in the screen shot below:


[image: _images/multi_inputs.png]



Then finish setting up other inputs following the description in sections below. When you are done, click SAVE, and then RUN ANALYSIS.

When all the jobs are done, you’ll find output for the 2 samples in subfolders gs://fc-e0000000-0000-0000-0000-000000000000/cumulus_results/5k_pbmc_v3 and gs://fc-e0000000-0000-0000-0000-000000000000/cumulus_results/1k_pbmc_v3, respectively.








Cumulus steps:

Cumulus processes single cell data in the following steps:


	aggregate_matrices (optional). When given a CSV format sample sheet, this step aggregates channel-specific count matrices into one big count matrix. Users can specify which channels they want to analyze and which sample attributes they want to import to the count matrix in this step. Otherwise, if a single count matrix file is given, skip this step.


	cluster. This is the main analysis step. In this step, Cumulus performs low quality cell filtration, highly variable gene selection, batch correction, dimension reduction, diffusion map calculation, graph-based clustering and 2D visualization calculation (e.g. t-SNE/UMAP/FLE).


	de_analysis. This step is optional. In this step, Cumulus can calculate potential markers for each cluster by performing a variety of differential expression (DE) analysis. The available DE tests include Welch’s t test, Fisher’s exact test, and Mann-Whitney U test. Cumulus can also calculate the area under ROC (AUROC) curve values for putative markers. If find_markers_lightgbm is on, Cumulus will try to identify cluster-specific markers by training a LightGBM classifier. If the samples are human or mouse immune cells, Cumulus can also optionally annotate putative cell types for each cluster based on known markers.


	plot. This step is optional. In this step, Cumulus can generate 6 types of figures based on the cluster step results:



	composition plots which are bar plots showing the cell compositions (from different conditions) for each cluster. This type of plots is useful to fast assess library quality and batch effects.


	tsne, fitsne, and net_tsne: t-SNE like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.


	umap and net_umap: UMAP like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.


	fle and net_fle: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.


	diffmap plots which are 3D interactive plots showing the diffusion maps. The 3 coordinates are the first 3 PCs of all diffusion components.


	If input is CITE-Seq data, there will be citeseq_fitsne plots which are FIt-SNE plots based on epitope expression.









	cirro_output. This step is optional. Generate Cirrocumulus [https://cirrocumulus.readthedocs.io/en/latest/] inputs for visualization using Cirrocumulus [https://cirrocumulus.readthedocs.io/en/latest/] .


	scp_output. This step is optional. Generate analysis result in Single Cell Portal [https://portals.broadinstitute.org/single_cell] (SCP) compatible format.




In the following sections, we will first introduce global inputs and then introduce the WDL inputs and outputs for each step separately. But please note that you need to set inputs from all steps simultaneously in the Terra WDL.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.






global inputs









	Name

	Description

	Example

	Default





	input_file

	Input CSV sample sheet describing metadata of each 10x channel, or a single input count matrix file

	“gs://fc-e0000000-0000-0000-0000-000000000000/my_count_matrix.csv”

	


	output_directory

	Google bucket URL of the output directory.

	“gs://fc-e0000000-0000-0000-0000-000000000000/my_results_dir”

	


	output_name

	This is the name of subdirectory for the current sample; and all output files within the subdirectory will have this string as the common filename prefix.

	“my_sample”

	


	cumulus_version

	cumulus version to use. Versions available: 1.1.0, 1.0.0, 0.16.0, 0.15.0, 0.13.0, 0.12.0, 0.11.0, 0.10.0.

	“1.1.0”

	“1.1.0”



	docker_registry

	Docker registry to use. Options:


	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.





	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones to consider for execution.

	“us-east1-d us-west1-a us-west1-b”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of CPUs per Cumulus job

	32

	64



	memory

	Memory size string

	“200G”

	“200G”



	disk_space

	Total disk space in GB

	100

	100



	preemptible

	Number of preemptible tries

	2

	2











aggregate_matrices


aggregate_matrices inputs









	Name

	Description

	Example

	Default





	restrictions

	Select channels that satisfy all restrictions. Each restriction takes the format of name:value,…,value. Multiple restrictions are separated by ‘;’

	“Source:bone_marrow;Platform:NextSeq”

	


	attributes

	Specify a comma-separated list of outputted attributes. These attributes should be column names in the count_matrix.csv file

	“Source,Platform,Donor”

	


	select_only_singlets

	If we have demultiplexed data, turning on this option will make cumulus only include barcodes that are predicted as singlets.

	true

	false



	minimum_number_of_genes

	Only keep barcodes with at least this number of expressed genes

	100

	100



	is_dropseq

	If inputs are DropSeq data.

	false

	false









aggregate_matrices output








	Name

	Type

	Description





	output_aggr_zarr

	File

	Aggregated count matrix in Zarr format













cluster


cluster inputs









	Name

	Description

	Example

	Default





	focus

	
Focus analysis on Unimodal data with <keys>. <keys> is a comma-separated list of keys. If None, the self._selected will be the focused one.

Focus key consists of two parts: reference genome name, and data type, connected with a hyphen marker “-“.

Reference genome name depends on the reference you used when running Cellranger workflow. See details in reference list.




	“GRCh38-rna”

	


	append

	
Append Unimodal data <key> to any <keys> in focus.

Similarly as focus keys, append key also consists of two parts: reference genome name, and data type, connected with a hyphen marker “-“.

See reference list for details.




	“SARSCoV2-rna”

	


	channel

	Specify the cell barcode attribute to represent different samples.

	“Donor”

	


	black_list

	Cell barcode attributes in black list will be poped out. Format is “attr1,attr2,…,attrn”.

	“attr1,attr2,attr3””

	


	min_genes_before_filtration

	If raw data matrix is input, empty barcodes will dominate pre-filtration statistics. To avoid this, for raw data matrix, only consider barcodes with at lease <min_genes_before_filtration> genes for pre-filtration condition.

	100

	100



	select_only_singlets

	If we have demultiplexed data, turning on this option will make cumulus only include barcodes that are predicted as singlets

	false

	false



	remap_singlets

	
For demultiplexed data, user can remap singlet names using assignment in String in this input. This string assignment takes the format “new_name_i:old_name_1,old_name_2;new_name_ii:old_name_3;…”.

For example, if we hashed 5 libraries from 3 samples: sample1_lib1, sample1_lib2; sample2_lib1, sample2_lib2; sample3, we can remap them to 3 samples using this string: "sample1:sample1_lib1,sample1_lib2;sample2:sample2_lib1,sample2_lib2".

In this way, the new singlet names will be in metadata field with key assignment, while the old names are kept in metadata with key assignment.orig.




	“Group1:CB1,CB2;Group2:CB3,CB4,CB5”

	


	subset_singlets

	
For demultiplexed data, user can use this input to choose a subset of singlets based on their names. This string takes the format “name1,name2,…”.

Note that if remap_singlets is specified, subsetting happens after remapping, i.e. you should use the new singlet names for choosing subset.




	“Group2,CB6,CB7”

	


	output_filtration_results

	If write cell and gene filtration results to a spreadsheet

	true

	true



	plot_filtration_results

	If plot filtration results as PDF files

	true

	true



	plot_filtration_figsize

	Figure size for filtration plots. <figsize> is a comma-separated list of two numbers, the width and height of the figure (e.g. 6,4)

	6,4

	


	output_h5ad

	Generate Seurat-compatible h5ad file. Must set to true if performing DE analysis, cell type annotation, or plotting.

	true

	true



	output_loom

	If generate loom-formatted file

	false

	false



	min_genes

	Only keep cells with at least <min_genes> of genes

	500

	500



	max_genes

	Only keep cells with less than <max_genes> of genes

	6000

	6000



	min_umis

	Only keep cells with at least <min_umis> of UMIs. By default, don’t filter cells due to UMI lower bound.

	100

	


	max_umis

	Only keep cells with less than <max_umis> of UMIs. By default, don’t filter cells due to UMI upper bound.

	600000

	


	mito_prefix

	Prefix of mitochondrial gene names. This is to identify mitochondrial genes.

	“mt-“

	
“MT-” for GRCh38 reference genome data;

“mt-” for mm10 reference genome data;

for other reference genome data, must specify this prefix manually.






	percent_mito

	Only keep cells with mitochondrial ratio less than <percent_mito>% of total counts

	50

	20.0



	gene_percent_cells

	Only use genes that are expressed in at <gene_percent_cells>% of cells to select variable genes

	50

	0.05



	counts_per_cell_after

	Total counts per cell after normalization, before transforming the count matrix into Log space.

	1e5

	1e5



	select_hvf_flavor

	Highly variable feature selection method. Options:


	“pegasus”: New selection method proposed in Pegasus, the analysis module of Cumulus workflow.


	“Seurat”: Conventional selection method used by Seurat and SCANPY.





	“pegasus”

	“pegasus”



	select_hvf_ngenes

	Select top <select_hvf_ngenes> highly variable features. If <select_hvf_flavor> is “Seurat” and <select_hvf_ngenes> is “None”, select HVGs with z-score cutoff at 0.5.

	2000

	2000



	no_select_hvf

	Do not select highly variable features.

	false

	false



	plot_hvf

	Plot highly variable feature selection. Will not work if no_select_hvf is true.

	false

	false



	correct_batch_effect

	If correct batch effects

	false

	false



	correction_method

	Batch correction method. Options:


	“harmony”: Harmony algorithm (Korsunsky et al. Nature Methods 2019).


	“L/S”: Location/Scale adjustment algorithm (Li and Wong. The analysis of Gene Expression Data, 2003).


	“scanorama”: Scanorama algorithm (Hie et al. Nature Biotechnology 2019).





	“harmony”

	“harmony”



	batch_group_by

	
Batch correction assumes the differences in gene expression between channels are due to batch effects.

However, in many cases, we know that channels can be partitioned into several groups and each group is biologically different from others.

In this case, we will only perform batch correction for channels within each group. This option defines the groups.

If <expression> is None, we assume all channels are from one group. Otherwise, groups are defined according to <expression>.

<expression> takes the form of either ‘attr’, or ‘attr1+attr2+…+attrn’, or ‘attr=value11,…,value1n_1;value21,…,value2n_2;…;valuem1,…,valuemn_m’.

In the first form, ‘attr’ should be an existing sample attribute, and groups are defined by ‘attr’.

In the second form, ‘attr1’,…,’attrn’ are n existing sample attributes and groups are defined by the Cartesian product of these n attributes.

In the last form, there will be m + 1 groups.

A cell belongs to group i (i > 0) if and only if its sample attribute ‘attr’ has a value among valuei1,…,valuein_i.

A cell belongs to group 0 if it does not belong to any other groups




	“Donor”

	None



	random_state

	Random number generator seed

	0

	0



	calc_signature_scores

	Gene set for calculating signature scores. It can be either of the following forms:


	String chosen from: cell_cycle_human, cell_cycle_mouse, gender_human, gender_mouse, mitochondrial_genes_human, mitochondrial_genes_mouse, robosomal_genes_human, robosomal_genes_mouse, apoptosis_human, and apoptosis_mouse.


	Google bucket URL of a GMT [https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats#GMT:_Gene_Matrix_Transposed_file_format_.28.2A.gmt.29] format file. For example: gs://fc-e0000000-0000-0000-0000-000000000000/cell_cycle_sig.gmt.





	“cell_cycle_human”

	


	nPC

	Number of principal components

	50

	50



	knn_K

	Number of nearest neighbors used for constructing affinity matrix.

	50

	100



	knn_full_speed

	For the sake of reproducibility, we only run one thread for building kNN indices. Turn on this option will allow multiple threads to be used for index building. However, it will also reduce reproducibility due to the racing between multiple threads.

	false

	false



	run_diffmap

	Whether to calculate diffusion map or not. It will be automatically set to true when input run_fle or run_net_fle is set.

	false

	false



	diffmap_ndc

	Number of diffusion components

	100

	100



	diffmap_maxt

	Maximum time stamp in diffusion map computation to search for the knee point.

	5000

	5000



	run_louvain

	Run Louvain clustering algorithm

	true

	true



	louvain_resolution

	Resolution parameter for the Louvain clustering algorithm

	1.3

	1.3



	louvain_class_label

	Louvain cluster label name in analysis result.

	“louvain_labels”

	“louvain_labels”



	run_leiden

	Run Leiden clustering algorithm.

	false

	false



	leiden_resolution

	Resolution parameter for the Leiden clustering algorithm.

	1.3

	1.3



	leiden_niter

	Number of iterations of running the Leiden algorithm. If negative, run Leiden iteratively until no improvement.

	2

	-1



	leiden_class_label

	Leiden cluster label name in analysis result.

	“leiden_labels”

	“leiden_labels”



	run_spectral_louvain

	Run Spectral Louvain clustering algorithm

	false

	false



	spectral_louvain_basis

	Basis used for KMeans clustering. Use diffusion map by default. If diffusion map is not calculated, use PCA coordinates. Users can also specify “pca” to directly use PCA coordinates.

	“diffmap”

	“diffmap”



	spectral_louvain_resolution

	Resolution parameter for louvain.

	1.3

	1.3



	spectral_louvain_class_label

	Spectral louvain label name in analysis result.

	“spectral_louvain_labels”

	“spectral_louvain_labels”



	run_spectral_leiden

	Run Spectral Leiden clustering algorithm.

	false

	false



	spectral_leiden_basis

	Basis used for KMeans clustering. Use diffusion map by default. If diffusion map is not calculated, use PCA coordinates. Users can also specify “pca” to directly use PCA coordinates.

	“diffmap”

	“diffmap”



	spectral_leiden_resolution

	Resolution parameter for leiden.

	1.3

	1.3



	spectral_leiden_class_label

	Spectral leiden label name in analysis result.

	“spectral_leiden_labels”

	“spectral_leiden_labels”



	run_tsne

	Run FIt-SNE for visualization.

	false

	false



	tsne_perplexity

	t-SNE’s perplexity parameter.

	30

	30



	tsne_initialization

	Initialization method for FIt-SNE. It can be either: ‘random’ refers to random initialization; ‘pca’ refers to PCA initialization as described in [Kobak et al. 2019] [https://www.nature.com/articles/s41467-019-13056-x].

	“pca”

	“pca”



	run_umap

	Run UMAP for visualization

	true

	true



	umap_K

	K neighbors for UMAP.

	15

	15



	umap_min_dist

	UMAP parameter.

	0.5

	0.5



	umap_spread

	UMAP parameter.

	1.0

	1.0



	run_fle

	Run force-directed layout embedding (FLE) for visualization

	false

	false



	fle_K

	Number of neighbors for building graph for FLE

	50

	50



	fle_target_change_per_node

	Target change per node to stop FLE.

	2.0

	2.0



	fle_target_steps

	Maximum number of iterations before stopping the algoritm

	5000

	5000



	net_down_sample_fraction

	Down sampling fraction for net-related visualization

	0.1

	0.1



	run_net_umap

	Run Net UMAP for visualization

	false

	false



	net_umap_out_basis

	Basis name for Net UMAP coordinates in analysis result

	“net_umap”

	“net_umap”



	run_net_fle

	Run Net FLE for visualization

	false

	false



	net_fle_out_basis

	Basis name for Net FLE coordinates in analysis result.

	“net_fle”

	“net_fle”



	infer_doublets

	Infer doublets using the Pegasus method [https://github.com/klarman-cell-observatory/pegasus/raw/master/doublet_detection.pdf]. When finished, Scrublet-like doublet scores are in cell attribute doublet_score, and “doublet/singlet” assignment on cells are stored in cell attribute demux_type.

	false

	false



	expected_doublet_rate

	The expected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table.

	0.05

	


	doublet_cluster_attribute

	
Specify which cluster attribute (e.g. “louvain_labels”) should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher’s exact test and having >= 50% of cells identified as doublets.

If not specified, the first computed cluster attribute in the list of “leiden”, “louvain”, “spectral_ledein” and “spectral_louvain” will be used.




	“louvain_labels”

	


	citeseq

	
Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities.

This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality.




	false

	false



	citeseq_umap

	For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their antibody expression.

	false

	false



	citeseq_umap_exclude

	A comma-separated list of antibodies to be excluded from the CITE-Seq UMAP calculation (e.g. Mouse-IgG1,Mouse-IgG2a).

	“Mouse-IgG1,Mouse-IgG2a”

	








cluster outputs








	Name

	Type

	Description





	output_zarr

	File

	
Output file in zarr format (output_name.zarr.zip).

To load this file in Python, you need to first install PegasusIO [https://pegasusio.readthedocs.io] on your local machine. Then use import pegasusio as io; data = io.read_input('output_name.zarr.zip') in Python environment.

data is a MultimodalData object, and points to its default UnimodalData element. You can set its default UnimodalData to others by data.set_data(focus_key) where focus_key is the key string to the wanted UnimodalData element.

For its default UnimodalData element, the log-normalized expression matrix is stored in data.X as a Scipy CSR-format sparse matrix, with cell-by-gene shape.

The obs field contains cell related attributes, including clustering results.

For example, data.obs_names records cell barcodes; data.obs['Channel'] records the channel each cell comes from;

data.obs['n_genes'], data.obs['n_counts'], and data.obs['percent_mito'] record the number of expressed genes, total UMI count, and mitochondrial rate for each cell respectively;

data.obs['louvain_labels'], data.obs['leiden_labels'], data.obs['spectral_louvain_labels'], and data.obs['spectral_leiden_labels'] record each cell’s cluster labels using different clustering algorithms;

The var field contains gene related attributes.

For example, data.var_names records gene symbols, data.var['gene_ids'] records Ensembl gene IDs, and data.var['highly_variable_features'] records selected variable genes.

The obsm field records embedding coordinates.

For example, data.obsm['X_pca'] records PCA coordinates, data.obsm['X_tsne'] records t-SNE coordinates,

data.obsm['X_umap'] records UMAP coordinates, data.obsm['X_diffmap'] records diffusion map coordinates,

data.obsm['X_diffmap_pca'] records the first 3 PCs by projecting the diffusion components using PCA,

and data.obsm['X_fle'] records the force-directed layout coordinates from the diffusion components.

The uns field stores other related information, such as reference genome (data.uns['genome']), kNN on PCA coordinates (data.uns['pca_knn_indices'] and data.uns['pca_knn_distances']), etc.






	output_log

	File

	This is a copy of the logging module output, containing important intermediate messages



	output_h5ad

	Array[File]

	
List of output file(s) in Seurat-compatible h5ad format (output_name.focus_key.h5ad), in which each file is associated with a focus of the input data.

To load this file in Python, first install PegasusIO [https://pegasusio.readthedocs.io] on your local machine. Then use import pegasusio as io; data = io.read_input('output_name.focus_key.h5ad') in Python environment.

After loading, data has the similar structure as UnimodalData object in Description of output_zarr in cluster outputs section.

In addition, data.raw.X records filtered raw count matrix as a Scipy CSR-format sparse matrix, with cell-by-gene shape.

data.uns['scale.data'] records variable-gene-selected and standardized expression matrix which are ready to perform PCA, and data.uns['scale.data.rownames'] records indexes of the selected highly variable genes.

This file is used for loading in R and converting into a Seurat object (see here for instructions)






	output_filt_xlsx

	File

	
Spreadsheet containing filtration results (output_name.filt.xlsx).

This file has two sheets — Cell filtration stats and Gene filtration stats.

The first sheet records cell filtering results and it has 10 columns:

Channel, channel name; kept, number of cells kept; median_n_genes, median number of expressed genes in kept cells; median_n_umis, median number of UMIs in kept cells;

median_percent_mito, median mitochondrial rate as UMIs between mitochondrial genes and all genes in kept cells;

filt, number of cells filtered out; total, total number of cells before filtration, if the input contain all barcodes, this number is the cells left after ‘min_genes_on_raw’ filtration;

median_n_genes_before, median expressed genes per cell before filtration; median_n_umis_before, median UMIs per cell before filtration;

median_percent_mito_before, median mitochondrial rate per cell before filtration.

The channels are sorted in ascending order with respect to the number of kept cells per channel.

The second sheet records genes that failed to pass the filtering.

This sheet has 3 columns: gene, gene name; n_cells, number of cells this gene is expressed; percent_cells, the fraction of cells this gene is expressed.

Genes are ranked in ascending order according to number of cells the gene is expressed.

Note that only genes not expressed in any cell are removed from the data.

Other filtered genes are marked as non-robust and not used for TPM-like normalization






	output_filt_plot

	Array[File]

	
If not empty, this array contains 3 PDF files.

output_name.filt.gene.pdf, which contains violin plots contrasting gene count distributions before and after filtration per channel.

output_name.filt.UMI.pdf, which contains violin plots contrasting UMI count distributions before and after filtration per channel.

output_name.filt.mito.pdf, which contains violin plots contrasting mitochondrial rate distributions before and after filtration per channel






	output_hvf_plot

	Array[File]

	If not empty, this array contains PDF files showing scatter plots of genes upon highly variable feature selection.



	output_dbl_plot

	Array[File]

	If infer_doublets input field is true, this array will contain a number of png files, each corresponding to one sample/channel in the data. In each file, there are histograms showing the automated doublet rate selection of that sample/channel.



	output_loom_file

	Array[File]

	
List of output file in loom format (output_name.focus_key.loom), in which each file is associated with a focus of the input data.

To load this file in Python, first install loompy [http://linnarssonlab.org/loompy/installation/index.html]. Then type from loompy import connect; ds = connect('output_name.focus_key.loom') in Python environment.

The log-normalized expression matrix is stored in ds with gene-by-cell shape. ds[:, :] returns the matrix in dense format; ds.layers[''].sparse() returns it as a Scipy COOrdinate sparse matrix.

The ca field contains cell related attributes as row attributes, including clustering results and cell embedding coordinates.

For example, ds.ca['obs_names'] records cell barcodes; ds.ca['Channel'] records the channel each cell comes from;

ds.ca['louvain_labels'], ds.ca['leiden_labels'], ds.ca['spectral_louvain_labels'], and ds.ca['spectral_leiden_labels'] record each cell’s cluster labels using different clustering algorithms;

ds.ca['X_pca'] records PCA coordinates, ds.ca['X_tsne'] records t-SNE coordinates,

ds.ca['X_umap'] records UMAP coordinates, ds.ca['X_diffmap'] records diffusion map coordinates,

ds.ca['X_diffmap_pca'] records the first 3 PCs by projecting the diffusion components using PCA,

and ds.ca['X_fle'] records the force-directed layout coordinates from the diffusion components.

The ra field contains gene related attributes as column attributes.

For example, ds.ra['var_names'] records gene symbols, ds.ra['gene_ids'] records Ensembl gene IDs, and ds.ra['highly_variable_features'] records selected variable genes.
















de_analysis


de_analysis inputs









	Name

	Description

	Example

	Default





	perform_de_analysis

	Whether perform differential expression (DE) analysis. If performing, by default calculate AUROC scores and Mann-Whitney U test.

	true

	true



	cluster_labels

	Specify the cluster label used for DE analysis

	“louvain_labels”

	“louvain_labels”



	alpha

	Control false discovery rate at <alpha>

	0.05

	0.05



	fisher

	Calculate Fisher’s exact test

	true

	true



	t_test

	Calculate Welch’s t-test.

	true

	true



	find_markers_lightgbm

	If also detect markers using LightGBM

	false

	false



	remove_ribo

	Remove ribosomal genes with either RPL or RPS as prefixes. Currently only works for human data

	false

	false



	min_gain

	Only report genes with a feature importance score (in gain) of at least <gain>

	1.0

	1.0



	annotate_cluster

	If also annotate cell types for clusters based on DE results

	false

	false



	annotate_de_test

	Differential Expression test to use for inference on cell types. Options: mwu, t, or fisher

	“mwu”

	“mwu”



	organism

	Organism, could either of the follow:


	Preset markers: human_immune, mouse_immune, human_brain, mouse_brain, human_lung, or a combination of them as a string separated by comma.


	User-defined marker file: A Google bucket link to a user-specified JSON file describing the markers. For example: gs://fc-e0000000/my_markers.json.





	“mouse_immune,mouse_brain”

	“human_immune”



	minimum_report_score

	Minimum cell type score to report a potential cell type

	0.5

	0.5









de_analysis outputs








	Name

	Type

	Description





	output_de_h5ad

	Array[File]

	
List of h5ad-formatted results with DE results updated (output_name.focus_key.h5ad), in which each file is associated with a focus of the input data.

To load this file in Python, you need to first install PegasusIO [https://pegasusio.readthedocs.io] on your local machine. Then type import pegasusio as io; data = io.read_input('output_name.focus_key.h5ad') in Python environment.

After loading, data has the similar structure as UnimodalData object in Description of output_zarr in cluster outputs section.

Besides, there is one additional field varm which records DE analysis results in data.varm['de_res']. You can use Pandas DataFrame to convert it into a reader-friendly structure: import pandas as pd; df = pd.DataFrame(data.varm['de_res'], index = data.var_names). Then in the resulting data frame, genes are rows, and those DE test statistics are columns.

DE analysis in cumulus is performed on each cluster against cells in all the other clusters. For instance, in the data frame, column mean_logExpr:1 refers to the mean expression of genes in log-scale for cells in Cluster 1. The number after colon refers to the cluster label to which this statistic belongs.






	output_de_xlsx

	Array[File]

	
List of spreadsheets reporting DE results (output_name.focus_key.de.xlsx), in which each file is associated with a focus of the input data.

Each cluster has two tabs: one for up-regulated genes for this cluster, one for down-regulated ones. In each tab, genes are ranked by AUROC scores.

Genes which are not significant in terms of q-values in any of the DE test are not included (at false discovery rate specified in alpha field of de_analysis inputs).






	output_markers_xlsx

	Array[File]

	List of Excel spreadsheets containing detected markers (output_name.focus_key.markers.xlsx), in which each file is associated with a focus of the input data. Each cluster has one tab in the spreadsheet and each tab has three columns, listing markers that are strongly up-regulated, weakly up-regulated and down-regulated.



	output_anno_file

	Array[File]

	List of cluster-based cell type annotation files (output_name.focus_key.anno.txt), in which each file is associated with a focus of the input data.









How cell type annotation works

In this subsection, we will describe the format of input JSON cell type marker file, the ad hoc cell type inference algorithm, and the format of the output putative cell type file.


JSON file

The top level of the JSON file is an object with two name/value pairs:



	title: A string to describe what this JSON file is for (e.g. “Mouse brain cell markers”).


	cell_types: List of all cell types this JSON file defines. In this list, each cell type is described using a separate object with 2 to 3 name/value pairs:



	name: Cell type name (e.g. “GABAergic neuron”).


	markers: List of gene-marker describing objects, each of which has 2 name/value pairs:



	genes: List of positive and negative gene markers (e.g. ["Rbfox3+", "Flt1-"]).


	weight: A real number between 0.0 and 1.0 to describe how much we trust the markers in genes.











All markers in genes share the weight evenly. For instance, if we have 4 markers and the weight is 0.1, each marker has a weight of 0.1 / 4 = 0.025.

The weights from all gene-marker describing objects of the same cell type should sum up to 1.0.


	subtypes: Description on cell subtypes for the cell type. It has the same structure as the top level JSON object.














See below for an example JSON snippet:

{
  "title" : "Mouse brain cell markers",
    "cell_types" : [
      {
        "name" : "Glutamatergic neuron",
        "markers" : [
          {
            "genes" : ["Rbfox3+", "Reln+", "Slc17a6+", "Slc17a7+"],
            "weight" : 1.0
          }
        ],
        "subtypes" : {
          "title" : "Glutamatergic neuron subtype markers",
            "cell_types" : [
              {
                "name" : "Glutamatergic layer 4",
                "markers" : [
                  {
                    "genes" : ["Rorb+", "Paqr8+"],
                    "weight" : 1.0
                  }
                ]
              }
            ]
        }
      }
    ]
}








Inference Algorithm

We have already calculated the up-regulated and down-regulated genes for each cluster in the differential expression analysis step.

First, load gene markers for each cell type from the JSON file specified, and exclude marker genes, along with their associated weights, that are not expressed in the data.

Then scan each cluster to determine its putative cell types. For each cluster and putative cell type, we calculate a score between 0 and 1, which describes how likely cells from the cluster are of this cell type. The higher the score is, the more likely cells are from the cell type.

To calculate the score, each marker is initialized with a maximum impact value (which is 2). Then do case analysis as follows:



	For a positive marker:



	If it is not up-regulated, its impact value is set to 0.


	Otherwise, if it is up-regulated:



	If it additionally has a fold change in percentage of cells expressing this marker (within cluster vs. out of cluster) no less than 1.5, it has an impact value of 2 and is recorded as a strong supporting marker.


	If its fold change (fc) is less than 1.5, this marker has an impact value of 1 + (fc - 1) / 0.5 and is recorded as a weak supporting marker.
















	For a negative marker:



	If it is up-regulated, its impact value is set to 0.


	If it is neither up-regulated nor down-regulated, its impact value is set to 1.


	Otherwise, if it is down-regulated:



	If it additionally has 1 / fc (where fc is its fold change) no less than 1.5, it has an impact value of 2 and is recorded as a strong supporting marker.


	If 1 / fc is less than 1.5, it has an impact value of 1 + (1 / fc - 1) / 0.5 and is recorded as a weak supporting marker.





















The score is calculated as the weighted sum of impact values weighted over the sum of weights multiplied by 2 from all expressed markers. If the score is larger than 0.5 and the cell type has cell subtypes, each cell subtype will also be evaluated.




Output annotation file

For each cluster, putative cell types with scores larger than minimum_report_score will be reported in descending order with respect to their scores. The report of each putative cell type contains the following fields:



	name: Cell type name.


	score: Score of cell type.


	average marker percentage: Average percentage of cells expressing marker within the cluster between all positive supporting markers.


	strong support: List of strong supporting markers. Each marker is represented by a tuple of its name and percentage of cells expressing it within the cluster.


	weak support: List of week supporting markers. It has the same structure as strong support.
















plot

The h5ad file contains a default cell attribute Channel, which records which channel each that single cell comes from. If the input is a CSV format sample sheet, Channel attribute matches the Sample column in the sample sheet. Otherwise, it’s specified in channel field of the cluster inputs.

Other cell attributes used in plot must be added via attributes field in the aggregate_matrices inputs.


plot inputs









	Name

	Description

	Example

	Default





	plot_composition

	
Takes the format of “label:attr,label:attr,…,label:attr”.

If non-empty, generate composition plot for each “label:attr” pair.

“label” refers to cluster labels and “attr” refers to sample conditions




	“louvain_labels:Donor”

	None



	plot_tsne

	
Takes the format of “attr,attr,…,attr”.

If non-empty, plot attr colored FIt-SNEs side by side




	“louvain_labels,Donor”

	None



	plot_umap

	
Takes the format of “attr,attr,…,attr”.

If non-empty, plot attr colored UMAP side by side




	“louvain_labels,Donor”

	None



	plot_fle

	
Takes the format of “attr,attr,…,attr”.

If non-empty, plot attr colored FLE (force-directed layout embedding) side by side




	“louvain_labels,Donor”

	None



	plot_net_umap

	
Takes the format of “attr,attr,…,attr”.

If non-empty, plot attr colored UMAP side by side based on net UMAP result.




	“leiden_labels,Donor”

	None



	plot_net_fle

	
Takes the format of “attr,attr,…,attr”.

If non-empty, plot attr colored FLE (force-directed layout embedding) side by side

based on net FLE result.




	“leiden_labels,Donor”

	None



	plot_citeseq_umap

	
Takes the format of “attr,attr,…,attr”.

If non-empty, plot attr colored UMAP side by side based on CITE-Seq UMAP result.




	“louvain_labels,Donor”

	None









plot outputs








	Name

	Type

	Description





	output_pdfs

	Array[File]

	Outputted pdf files



	output_htmls

	Array[File]

	Outputted html files













Generate input files for Cirrocumulus [https://cirrocumulus.readthedocs.io/en/latest/]

Generate Cirrocumulus [https://cirrocumulus.readthedocs.io/en/latest/] inputs for visualization using Cirrocumulus [https://cirrocumulus.readthedocs.io/en/latest/] .


cirro_output inputs









	Name

	Description

	Example

	Default





	generate_cirro_inputs

	Whether to generate input files for Cirrocumulus

	false

	false









cirro_output outputs








	Name

	Type

	Description





	output_cirro_path

	Google Bucket URL

	Path to Cirrocumulus inputs













Generate SCP-compatible output files

Generate analysis result in Single Cell Portal [https://portals.broadinstitute.org/single_cell] (SCP) compatible format.


scp_output inputs









	Name

	Description

	Example

	Default





	generate_scp_outputs

	Whether to generate SCP format output or not.

	false

	false



	output_dense

	Output dense expression matrix, instead of the default sparse matrix format.

	false

	false









scp_output outputs








	Name

	Type

	Description





	output_scp_files

	Array[File]

	Outputted SCP format files.















Run CITE-Seq analysis

Users now can use cumulus/cumulus workflow solely to run CITE-Seq analysis.


	Prepare a sample sheet in the following format:

Sample,Location,Modality
sample_1,gs://your-bucket/rna_raw_counts.h5,rna
sample_1,gs://your-bucket/citeseq_cell_barcodes.csv,citeseq









Each row stands for one modality:



	Sample: Sample name, which must be the same in the two rows to let Cumulus aggregate RNA and CITE-Seq matrices.


	Location: Google bucket URL of the corresponding count matrix file.


	Modality: Modality type. rna for RNA count matrix; citeseq for CITE-Seq antibody count matrix.








	Run cumulus/cumulus workflow using this sample sheet as the input file, and specify the following input fields:



	citeseq: Set this to true to enable CITE-Seq analysis.


	citeseq_umap: Set this to true to calculate the CITE-Seq UMAP embedding on cells.


	citeseq_umap_exclude: A list of CITE-Seq antibodies to be excluded from UMAP calculation. This list should be written in a string format with each antobidy name separated by comma.


	plot_citeseq_umap: A list of cell barcode attributes to be plotted based on CITE-Seq UMAP embedding. This list should be written in a string format with each attribute separated by comma.
















Load Cumulus results into Pegasus

Pegasus [https://pegasus.readthedocs.io] is a Python package for large-scale single-cell/single-nucleus data analysis, and it uses PegasusIO [https://pegasusio.readthedocs.io] for read/write. To load Cumulus results into Pegasus, we provide instructions based on file format:


	zarr: Annotated Zarr file in zip format. This is the standard output format of Cumulus. You can load it by:

import pegasusio as io
data = io.read_input("output_name.zarr.zip")







	h5ad: When setting “output_h5ad” field in Cumulus cluster to true, a list of annotated H5AD file(s) will be generated besides Zarr result. If the input data have multiple foci, Cumulus will generate one H5AD file per focus. You can load it by:

import pegasusio as io
adata = io.read_input("output_name.focus_key.h5ad")









Sometimes you may also want to specify how the result is loaded into memory. In this case, read_input has argument mode. Please see its documentation [https://pegasusio.readthedocs.io/en/latest/api/pegasusio.read_input.html#pegasusio.read_input] for details.


	loom: When setting “output_loom” field in Cumulus cluster to true, a list of loom format file(s) will be generated besides Zarr result. Similarly as H5AD output, Cumulus generates multiple loom files if the input data have more than one foci. To load loom file, you can optionally set its genome name in the following way as this information is not contained by loom file:

import pegasusio as io
data = pg.read_input("output_name.focus_key.loom", genome = "GRCh38")









After loading, Pegasus manipulate the data matrix in PegasusIO MultimodalData structure.






Load Cumulus results into Seurat

Seurat [https://satijalab.org/seurat] is a single-cell data analysis package written in R.


Load H5AD File into Seurat

First, you need to set “output_h5ad” field to true in cumulus cluster inputs to generate Seurat-compatible output files output_name.focus_key.h5ad, in addition to the standard result output_name.zarr.zip. If the input data have multiple foci, Cumulus will generate one H5AD file per focus.

Notice that Python, and Python package anndata [https://anndata.readthedocs.io/en/latest/] with version at least 0.6.22.post1, and R package reticulate [https://cran.r-project.org/web/packages/reticulate/index.html] are required to load the result into Seurat.

Execute the R code below to load the h5ad result into Seurat (working with both Seurat v2 and v3):

source("https://raw.githubusercontent.com/klarman-cell-observatory/cumulus/master/workflows/cumulus/h5ad2seurat.R")
ad <- import("anndata", convert = FALSE)
test_ad <- ad$read_h5ad("output_name.focus_key.h5ad")
result <- convert_h5ad_to_seurat(test_ad)





The resulting Seurat object result has three data slots:



	raw.data records filtered raw count matrix.


	data records filtered and log-normalized expression matrix.


	scale.data records variable-gene-selected, standardized expression matrix that are ready to perform PCA.










Load loom File into Seurat

First, you need to set “output_loom” field to true in cumulus cluster inputs to generate a loom format output file, say output_name.focus_key.loom, in addition to the standard result output_name.zarr.zip. If the input data have multiple foci, Cumulus will generate one loom file per focus.

You also need to install loomR package in your R environment:

install.package("devtools")
devtools::install_github("mojaveazure/loomR", ref = "develop")





Execute the R code below to load the loom file result into Seurat (working with Seurat v3 only):

source("https://raw.githubusercontent.com/klarman-cell-observatory/cumulus/master/workflows/cumulus/loom2seurat.R")
result <- convert_loom_to_seurat("output_name.focus_key.loom")





In addition, if you want to set an active cluster label field for the resulting Seurat object, do the following:

Idents(result) <- result@meta.data$louvain_labels





where louvain_labels is the key to the Louvain clustering result in Cumulus, which is stored in cell attributes result@meta.data.








Load Cumulus results into SCANPY

SCANPY [https://scanpy.readthedocs.io] is another Python package for single-cell data analysis. We provide instructions on loading Cumulus output into SCANPY based on file format:


	h5ad: Annotated H5AD file. This is the standard output format of Cumulus:

import scanpy as sc
adata = sc.read_h5ad("output_name.h5ad")









Sometimes you may also want to specify how the result is loaded into memory. In this case, read_h5ad has argument backed. Please see SCANPY documentation [https://icb-scanpy.readthedocs-hosted.com/en/stable/api/scanpy.read_h5ad.html] for details.


	loom: This format is generated when setting “output_loom” field in Cumulus cluster to true:

import scanpy as sc
adata = sc.read_loom("output_name.loom")









Besides, read_loom has a boolean sparse argument to decide whether to read the data matrix as sparse, with default value True. If you want to load it as a dense matrix, simply type:

adata = sc.read_loom("output_name.loom", sparse = False)





After loading, SCANPY manipulates the data matrix in anndata [https://anndata.readthedocs.io/en/latest/] structure.






Visualize Cumulus results in Python

Ensure you have Pegasus [https://pegasus.readthedocs.io] installed.

Download your analysis result data, say output_name.zarr.zip, from Google bucket to your local machine.

Follow Pegasus plotting tutorial [https://pegasus.readthedocs.io/en/stable/_static/tutorials/plotting_tutorial.html] for visualizing your data in Python.







          

      

      

    

  

    
      
          
            
  
Run Terra pipelines via command line

You can run Terra pipelines via the command line by installing the altocumulus package.


Install altocumulus for Broad users

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab





The above command requests an interactive shell using the regevlab project with 4G memory per thread, 8 threads. Feel free to change the memory, thread, and project parameters.

Add conda to your path:

reuse Anaconda3





Activate the alto virtual environment:

source activate /seq/regev_genome_portal/conda_env/cumulus








Install altocumulus for non-Broad users


	Make sure you have conda installed. If you haven’t installed conda [https://docs.conda.io/en/latest/miniconda.html], use the following commands to install it on Linux:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh .
bash Miniconda3-latest-Linux-x86_64.sh -p /home/foo/miniconda3
mv Miniconda3-latest-Linux-x86_64.sh /home/foo/miniconda3





where /home/foo/miniconda3 should be replaced by your own folder holding Miniconda3.





Or use the following commdands for MacOS installation:

curl -O curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
bash Miniconda3-latest-MacOSX-x86_64.sh -p /Users/foo/miniconda3
mv Miniconda3-latest-MacOSX-x86_64.sh /Users/foo/miniconda3

where ``/Users/foo/miniconda3`` should be replaced by your own folder holding Miniconda3.






	Create a conda environment named “alto” and install altocumulus:

conda create -n alto -y pip
source activate alto
pip install altocumulus









When the installation is done, type alto -h in terminal to see if you can see the help information.




Set up Google Cloud Account

Install Google Cloud SDK [https://cloud.google.com/cloud-sdk] on your local machine.

Then type the following command in your terminal

gcloud auth application-default login





and follow the pop-up instructions to set up your Google cloud account.




Run Terra workflows via alto run

alto run runs a Terra method. Features:


	Uploads local files/directories in your inputs to a Google Cloud bucket updates the file paths to point to the Google Cloud bucket.


Your sample sheet can point to local file paths. In this case, alto run will take care of uploading directories smartly (e.g. only upload necessary files in BCL folders) and modifying the sample sheet to point to a Google Cloud bucket.






	Creates or uses an existing workspace.


	Uses the latest version of a method unless the method version is specified.





Options

Required options are in bold.







	Name

	Description





	
-m <METHOD>

--method <METHOD>




	
Specify a Terra workflow <METHOD> to use.

<METHOD> is of format Namespace/Name (e.g. cumulus/cellranger_workflow).

A snapshot version number can optionally be specified (e.g. cumulus/cellranger_workflow/4); otherwise the latest snapshot of the method is used.






	
-w <WORKSPACE>

--workspace <WORKSPACE>




	
Specify which Terra workspace <WORKSPACE> to use.

<WORKSPACE> is also of format Namespace/Name (e.g. foo/bar). The workspace will be created if it does not exist.






	
-i <WDL_INPUTS>

--inputs <WDL_INPUTS>




	
Specify the WDL input JSON file to use.

It can be a local file, a JSON string, or a Google bucket URL directing to a remote JSON file.






	
--bucket-folder <folder>




	
Store inputs to <folder> under workspace’s google bucket.






	
-o <updated_json>

--upload <updated_json>




	
Upload files/directories to Google bucket of the workspace, and generate an updated input JSON file (with local paths replaced by Google bucket URLs) to <updated_json> on local machine.






	
--no-cache




	
Disable Terra cache calling












Example

This example shows how to use alto run to run cellranger_workflow to extract gene-count matrices from sequencing output.


	Prepare your sample sheet example_sample_sheet.csv as the following:

Sample,Reference,Flowcell,Lane,Index,Chemistry
sample_1,GRCh38,/my-local-path/flowcell1,1-2,SI-GA-A8,threeprime
sample_2,GRCh38,/my-local-path/flowcell1,3-4,SI-GA-B8,threeprime
sample_3,mm10,/my-local-path/flowcell1,5-6,SI-GA-C8,fiveprime
sample_4,mm10,/my-local-path/flowcell1,7-8,SI-GA-D8,fiveprime
sample_1,GRCh38,/my-local-path/flowcell2,1-2,SI-GA-A8,threeprime
sample_2,GRCh38,/my-local-path/flowcell2,3-4,SI-GA-B8,threeprime
sample_3,mm10,/my-local-path/flowcell2,5-6,SI-GA-C8,fiveprime
sample_4,mm10,/my-local-path/flowcell2,7-8,SI-GA-D8,fiveprime





where /my-local-path is the top-level directory of your BCL files on your local machine.

Note that sample_1, sample_2, sample_3, and sample_4 are sequenced on 2 flowcells.



	Prepare your JSON input file inputs.json for cellranger_workflow:

{
    "cellranger_workflow.input_csv_file" : "/my-local-path/sample_sheet.csv",
    "cellranger_workflow.output_directory" : "gs://url/outputs",
    "cellranger_workflow.delete_input_bcl_directory": true
}





where gs://url/outputs is the folder on Google bucket of your workspace to hold output.



	Run the following command to kick off your Terra workflow:

alto run -m cumulus/cellranger_workflow -i inputs.json -w myworkspace_namespace/myworkspace_name -o inputs_updated.json





where myworkspace_namespace/myworkspace_name should be replaced by your workspace namespace and name.





Upon success, alto run returns a URL pointing to the submitted Terra job for you to monitor.

If for any reason, your job failed. You could rerun it without uploading files again via the following command:

alto run -m cumulus/cellranger_workflow -i inputs_updated.json -w myworkspace_namespace/myworkspace_name





because inputs_updated.json is the updated version of inputs.json with all local paths being replaced by their corresponding Google bucket URLs after uploading.









          

      

      

    

  

    
      
          
            
  
Examples




Examples using Terra to perform single-cell sequencing analysis are provided here. Please click the topics on the left panel under title “Examples” to explore.





          

      

      

    

  

    
      
          
            
  
Example of Cell-Hashing and CITE-Seq Analysis on Cloud

In this example, you’ll learn how to perform Cell-Hashing and CITE-Seq analysis using cumulus on Terra [https://app.terra.bio/].




0. Workspace and Data Preparation

After registering on Terra and creating a workspace there, you’ll need the following two information:



	Terra workspace name. This is shown on your Terra workspace webpage, with format “<workspace-namespace>/<workspace-name>”. Let it be ws-lab/ws-01 in this example, which means that your workspace has namespace ws-lab and name ws-01.


	The corresponding Google Cloud Bucket of your workspace. You can check it under “Google Bucket” title on the right panel of your Terra workspace’s Dashboard tab. The bucket name associated with your workspace starts with fc- followed by a sequence of heximal numbers. In this example, let it be: gs://fc-e0000000, where “gs://” is the head of Google bucket URL.







Then upload your BCL directories to Google bucket of your workspace using gsutil [https://cloud.google.com/storage/docs/gsutil]:

gsutil -m cp -r /my-local-path/BCL/* gs://fc-e0000000/data-source





where option -m means copy in parallel, -r means copy the directory recursively, /my-local-path/BCL is the path to the top-level directory of your BCL files on your local machine, and data-source is the folder on Google bucket to hold the uploaded data.






1. Extract Gene-Count Matrices

First step is to extract gene-count matrices from sequencing output.

You need two original files from your dataset to start:



	Cell-Hashing Index CSV file, say its filename is cell_hashing_index.csv, of format “feature_barcode,feature_name”. See an example below:

AATCATCACAAGAAA,CB1
GGTCACTGTTACGTA,CB2
... ...





where each line is a pair of feature barcode and feature name of a sample.



	CITE-Seq Index CSV file, say its filename is cite_seq_index.csv, of the same format as above. See an example below:

TTACATGCATTACGA,CD19
GCATTAGCATGCAGC,HLA-ABC
... ...





where each line is a pair of Barcode and Specificity of an Antibody.








Then upload them to your Google Bucket using gsutil [https://cloud.google.com/storage/docs/gsutil]. Assuming both files are in folder /Users/foo/data-source on your local machine, type the following command to upload:

gsutil -m cp -r /Users/foo/data-source gs://fc-e0000000/data-source





where gs://fc-e0000000/data-source is your working directory at cloud side, which can be changed at your will.

Next, create a sample sheet, cellranger_sample_sheet.csv, for Cell Ranger processing. Below is an example:

Sample,Reference,Flowcell,Lane,Index,DataType,FeatureBarcodeFile
sample_control,GRCh38,gs://fc-e0000000/data-source,2,SI-GA-F1,rna
sample_cc,GRCh38,gs://fc-e0000000/data-source,3,SI-GA-A1,rna
sample_cell_hashing,GRCh38,gs://fc-e0000000/data-source,3,ATTACTCG,adt,cell_hashing_index.csv
sample_cite_seq,GRCh38,gs://fc-e0000000/data-source,3,CGTGAT,adt,cite_seq_index.csv





For the details on how to prepare this sample sheet, please refer to Step 3 of Cell Ranger sample sheet instruction.





When you are done with the sample sheet, upload it to Google bucket:

gsutil cp cellranger_sample_sheet.csv gs://fc-e0000000/my-dir/





Now we are ready to set up cellranger_workflow workflow for this phase. If your workspace doesn’t have this workflow, import it to your workspace by following cellranger_workflow import instructions.

Then prepare a JSON file, cellranger_inputs.json, which is used to set up the workflow inputs:

{
        "cellranger_workflow.input_csv_file" : "gs://fc-e0000000/my-dir/cellranger_sample_sheet.csv",
        "cellranger_workflow.output_directory" : "gs://fc-e0000000/my-dir"
}





where gs://fc-e0000000/my-dir is the remote directory in which the output of cellranger_workflow will be generated. For the details on the options above, please refer to Cell Ranger workflow inputs.





When you are done with the JSON file, on cellranger_workflow workflow page, upload cellranger_inputs.json by clicking upload json link as below:


[image: ../_images/upload_json.png]



Then Click SAVE button to save the inputs, and click RUN ANALYSIS button as below to start the job:


[image: ../_images/run_analysis.png]



When the execution is done, all the output results will be in folder gs://fc-e0000000/my-dir.

For the next phases, you’ll need 3 files from the output:



	RNA count matrix of the sample group of interest: gs://fc-e0000000/my-dir/sample_cc/raw_feature_bc_matrix.h5;


	Cell-Hashing Antibody count matrix: gs://fc-e0000000/my-dir/sample_cell_hashing/sample_cell_hashing.csv;


	CITE-Seq Antibody count matrix: gs://fc-e0000000/my-dir/sample_cite_seq/sample_cite_seq.csv.












2. Demultiplex Cell-Hashing Data



	Prepare a sample sheet, demux_sample_sheet.csv, with the following content:

OUTNAME,RNA,TagFile,TYPE
exp,gs://fc-e0000000/my-dir/raw_feature_bc_matrix.h5,gs://fc-e0000000/my-dir/sample_cell_hashing.csv,cell-hashing





where OUTNAME specifies the subfolder and file names of output, which is free to change, RNA and TagFile columns specify the RNA and hashing tag meta-data of samples, and TYPE is cell-hashing for this phase.

Then upload it to Google bucket:

gsutil cp demux_sample_sheet.csv gs://fc-e0000000/my-dir/







	If your workspace doesn’t have demultiplexing workflow, import it to your workspace by following Step 2 of demultiplexing workflow preparation instructions.


	Prepare an input JSON file, demux_inputs.json with the following content to set up cumulus_hashing_cite_seq workflow inputs:

{
        "demultiplexing.input_sample_sheet" : "gs://fc-e0000000/my-dir/demultiplex_sample_sheet.csv",
        "demultiplexing.output_directory" : "gs://fc-e0000000/my-dir/"
}





For the details on these options, please refer to demultiplexing workflow inputs.



	On the page of demultiplexing workflow, upload demux_inputs.json by clicking upload json link. Save the inputs, and click RUN ANALYSIS button to start the job.







When the execution is done, you’ll get a processed file, exp_demux.zarr.zip, stored on cloud in directory gs://fc-e0000000/my-dir/exp/.






3. Data Analysis on CITE-Seq Data

In this step, we need to merge RNA and ADT matrices for CITE-Seq data, and perform the downstream analysis.



	Prepare a sample sheet, cumulus_count_matrix.csv, with the following content:

Sample,Location,Modality
exp,gs://fc-e0000000/my-dir/exp/exp_demux.zarr.zip,rna
exp,gs://fc-e0000000/my-dir/sample_cite_seq/sample_cite_seq.csv,citeseq





This sample sheet describes the metadata for each modality (as one row in the sheet):



	Sample specifies the name of the modality, and all modalities must have the same name, as otherwise their count matrices won’t be aggregated together;


	Location specifies the file location. For RNA data, it’s the output of Phase 2; for CITE-Seq antibody data, it’s the output of Phase 1.


	Modality specifies the modality type, which is either rna for RNA matrix, or citeseq for CITE-Seq antibody matrix.







Then upload it to Google bucket:

gsutil cp cumulus_count_matrix.csv gs://fc-e0000000/my-dir/







	If your workspace doesn’t have cumulus workflow, import it to your workspace by following Step 2 and 3 of cumulus documentation.


	Prepare a JSON file, cumulus_inputs.json with the following content to set up cumulus workflow inputs:

{
        "cumulus.input_file" : "gs://fc-e0000000/my-dir/cumulus_count_matrix.csv",
        "cumulus.output_directory" : "gs://fc-e0000000/my-dir/results",
        "cumulus.output_name" : "exp_merged_out",
        "cumulus.select_only_singlets" : true,
        "cumulus.run_louvain" : true,
        "cumulus.run_umap" : true,
        "cumulus.citeseq" : true,
        "cumulus.citeseq_umap" : true,
        "cumulus.citeseq_umap_exclude" : "Mouse_IgG1,Mouse_IgG2a,Mouse_IgG2b,Rat_IgG2b",
        "cumulus.plot_composition" : "louvain_labels:assignment",
        "cumulus.plot_umap" : "louvain_labels,assignment",
        "cumulus.plot_citeseq_umap" : "louvain_labels,assignment",
        "cumulus.cluster_labels" : "louvain_labels",
        "cumulus.annotate_cluster" : true
}





A typical cumulus pipeline consists of 4 steps, which is given here. For the details of options above, please refer to cumulus inputs.



	On the page of cumulus workflow, upload cumulus_inputs.json by clicking upload json link. Save the inputs, and click RUN ANALYSIS button to start the job.







When the execution is done, you’ll get the following results stored on cloud gs://fc-e0000000/my-dir/results/exp_merged_out/ to check:



	exp_merged_out.aggr.zarr.zip: The ZARR format file containing both the aggregated count matrix in <genome>-rna modality, as well as CITE-Seq antibody count matrix in <genome>-citeseq modality, where <genome> is the genome reference name of your count matrices, e.g. GRCh38.


	exp_merged_out.zarr.zip: The ZARR format file containing the analysis results in <genome>-rna modality, and CITE-Seq antibody count matrix in <genome>-citeseq modality.


	exp_merged_out.<genome>-rna.h5ad: The processed RNA matrix data in H5AD format.


	exp_merged_out.<genome>-rna.filt.xlsx: The Quality-Control (QC) summary of the raw data.


	exp_merged_out.<genome>-rna.filt.{UMI, gene, mito}.pdf: The QC plots of the raw data.


	exp_merged_out.<genome>-rna.de.xlsx: Differential Expression analysis result.


	exp_merged_out.<genome>-rna.anno.txt: Cell type annotation output.


	exp_merged_out.<genome>-rna.umap.pdf: UMAP plot.


	exp_merged_out.<genome>-rna.citeseq.umap.pdf: CITE-Seq UMAP plot.


	exp_merged_out.<genome>-rna.louvain_labels.assignment.composition.pdf: Composition plot.







You can directly go to your Google Bucket to view or download these results.






(optional) Run Terra Workflows in Command Line

For Phase 1, 2, and 3, besides uploading sample sheets and setting-up workflow inputs on workflow pages, you can also start the workflow execution via command line using altocumulus tool.

First, install altocumulus by following altocumulus installation instruction.


	For Phase 1 above, when you are done with creating a sample sheet cellranger_sample_sheet.csv on your local machine, in the same directory, prepare JSON file cellranger_inputs.json as below:

{
        "cellranger_workflow.input_csv_file" : "cellranger_sample_sheet.csv",
        ... ...
}





where all the rest parameters remain the same as in Phase 1. Import cellranger_workflow workflow to your workspace as usual.

Now run the following command in the same directory on your local machine:

alto run -m cumulus/cellranger_workflow -w ws-lab/ws-01 --bucket-folder my-dir -i cellranger_input.json





Notice that if the execution failed, you could rerun the execution by setting cellranger_input_updated.json for -i option to use the sample sheet already uploaded to Google bucket. Similarly below.



	For Phase 2 above, similarly, in the same directory of your demux_sample_sheet.csv file, prepare JSON file demux_inputs.json as below:

{
        "demultiplexing.input_sample_sheet" : "demux_sample_sheet.csv",
        ... ...
}





where all the rest parameters remain the same as in Phase 2. Import demultiplexing workflow to your workspace as usual.

Run the following command in the same directory on your local machine:

alto run -m cumulus/demultiplexing -w ws-lab/ws-01 --bucket-folder my-dir -i demux_inputs.json







	For Phase 3 above, similarly, in the same directory of your cumulus_count_matrix.csv file, prepare JSON file cumulus_inputs.json as below:

{
        "cumulus.input_file" : "cumulus_count_matrix.csv",
        ... ...
}





where all the rest parameters remain the same as in Phase 3.

Run the following command in the same directory of your cumulus_inputs.json file:

alto run -m cumulus/cumulus -w ws-lab/ws-01 --bucket-folder my-dir/results -i cumulus_inputs.json















          

      

      

    

  

    
      
          
            
  
Extract gene-count matrices from plated-based SMART-Seq2 data


Run SMART-Seq2 Workflow

Follow the steps below to extract gene-count matrices from SMART-Seq2 data on Terra [https://app.terra.bio/]. This WDL aligns reads using STAR, HISAT2, or Bowtie 2 and estimates expression levels using RSEM.


	Copy your sequencing output to your workspace bucket using gsutil [https://cloud.google.com/storage/docs/gsutil] in your unix terminal.


You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

[image: _images/google_bucket_link.png]
Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab





The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil [https://cloud.google.com/storage/docs/gsutil] available by running:

reuse Google-Cloud-SDK





Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket.
For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4





-m means copy in parallel, -r means copy the directory recursively.






	Create a sample sheet.


Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet provides metadata for each cell:







	Column

	Description





	Cell

	Cell name.



	Plate

	Plate name. Cells with the same plate name are from the same plate.



	Read1

	Location of the FASTQ file for read1 in the cloud (gsurl).



	Read2

	(Optional). Location of the FASTQ file for read2 in the cloud (gsurl). This field can be skipped for single-end reads.






Example:

Cell,Plate,Read1,Read2
cell-1,plate-1,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/cell-1_L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/cell-1_L001_R2_001.fastq.gz
cell-2,plate-1,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/cell-2_L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/cell-2_L001_R2_001.fastq.gz
cell-3,plate-2,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/cell-3_L001_R1_001.fastq.gz,
cell-4,plate-2,gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2/cell-4_L001_R1_001.fastq.gz,










	Upload your sample sheet to the workspace bucket.


Example:

gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-0000-0000-000000000000/










	Import smartseq2 workflow to your workspace.


See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The smartseq2 workflow is under Broad Methods Repository with name “cumulus/smartseq2”.

Moreover, in the workflow page, click Export to Workspace... button, and select the workspace to which you want to export smartseq2 workflow in the drop-down menu.






	In your workspace, open smartseq2 in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below


[image: _images/single_workflow.png]



and click SAVE button.






Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.









	Name

	Description

	Example

	Default





	input_csv_file

	Sample Sheet (contains Cell, Plate, Read1, Read2)

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.csv”

	


	output_directory

	Output directory

	“gs://fc-e0000000-0000-0000-0000-000000000000/smartseq2_output”

	


	reference

	Reference transcriptome to align reads to. Acceptable values:


	Pre-created genome references:


	“GRCh38_ens93filt” for human, genome version is GRCh38, gene annotation is generated using human Ensembl 93 GTF according to cellranger mkgtf [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references];


	“GRCm38_ens93filt” for mouse, genome version is GRCm38, gene annotation is generated using mouse Ensembl 93 GTF according to cellranger mkgtf [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references];






	Create a custom genome reference using smartseq2_create_reference workflow, and specify its Google bucket URL here.





	
“GRCh38_ens93filt”, or

“gs://fc-e0000000-0000-0000-0000-000000000000/rsem_ref.tar.gz”




	


	aligner

	Which aligner to use for read alignment. Options are “hisat2-hca”, “star” and “bowtie”

	“star”

	“hisat2-hca”



	output_genome_bam

	Whether to output bam file with alignments mapped to genomic coordinates and annotated with their posterior probabilities.

	false

	false



	normalize_tpm_by_sequencing_depth

	Whether to normalize TPM values by sequencing depth.

	true

	true



	smartseq2_version

	SMART-Seq2 version to use. Versions available: 1.1.0.

	“1.1.0”

	“1.1.0”



	docker_registry

	Docker registry to use. Options:


	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.





	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones

	“us-east1-d us-west1-a us-west1-b”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	Number of cpus to request for one node

	4

	4



	memory

	Memory size string

	“3.60G”

	If aligner is bowtie2 or hisat2-hca, “3.6G”; otherwise “32G”



	disk_space_multiplier

	Factor to multiply size of R1 and R2 by for RSEM

	Float

	11



	generate_count_matrix_disk_space

	Disk space for count matrix generation task in GB

	Integer

	10



	preemptible

	Number of preemptible tries

	2

	2











Outputs:








	Name

	Type

	Description





	output_count_matrix

	Array[String]

	A list of google bucket urls containing gene-count matrices, one per plate. Each gene-count matrix file has the suffix .dge.txt.gz.



	output_qc_report

	Array[String]

	A list of google bucket urls containing simple quality control statistics, one per plate. Each file contains one line per cell and each line has three columns: Total reads, Alignment rate and Unique rate.



	rsem_gene

	Array[Array[File]]

	A 2D array of RSEM gene expression estimation files.



	rsem_gene

	Array[Array[File]]

	A 2D array of RSEM gene expression estimation files.



	rsem_isoform

	Array[Array[File]]

	A 2D array of RSEM isoform expression estimation files.



	rsem_trans_bam

	Array[Array[File]]

	A 2D array of RSEM transcriptomic BAM files.



	rsem_genome_bam

	Array[Array[File]]

	A 2D array of RSEM genomic BAM files if output_genome_bam is true.



	rsem_time

	Array[Array[File]]

	A 2D array of RSEM execution time log files.



	aligner_log

	Array[Array[File]]

	A 2D array of Aligner log files.



	rsem_cnt

	Array[Array[File]]

	A 2D array of RSEM count files.



	rsem_model

	Array[Array[File]]

	A 2D array of RSEM model files.



	rsem_theta

	Array[Array[File]]

	A 2D array of RSEM generated theta files.






This WDL generates one gene-count matrix per SMART-Seq2 plate. The gene-count matrix uses Drop-Seq format:


	The first line starts with "Gene" and then gives cell barcodes separated by tabs.


	Starting from the second line, each line describes one gene.
The first item in the line is the gene name and the rest items are TPM-normalized count values of this gene for each cell.




The gene-count matrices can be fed directly into cumulus for downstream analysis.

TPM-normalized counts are calculated as follows:


	Estimate the gene expression levels in TPM using RSEM.


	Suppose c reads are achieved for one cell, then calculate TPM-normalized count for gene i as TPM_i / 1e6 * c.




TPM-normalized counts reflect both the relative expression levels and the cell sequencing depth.








Custom Genome

We also provide a way of generating user-customized Genome references for SMART-Seq2 workflow.


	Import smartseq2_create_reference workflow to your workspace.


See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The smartseq2_create_reference workflow is under Broad Methods Repository with name “cumulus/smartseq2_create_reference”.

Moreover, in the workflow page, click Export to Workflow... button, and select the workspace to which you want to export smartseq2_create_reference in the drop-down menu.






	In your workspace, open smartseq2_create_reference in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below


[image: _images/single_workflow.png]



and click SAVE button.






Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.









	Name

	Description

	Type or Example

	Default





	fasta

	Genome fasta file

	
File.

For example, “gs://fc-e0000000-0000-0000-0000-000000000000/Homo_sapiens.GRCh38.dna.primary_assembly.fa”




	


	gtf

	GTF gene annotation file (e.g. Homo_sapiens.GRCh38.83.gtf)

	
File.

For example, “gs://fc-e0000000-0000-0000-0000-000000000000/Homo_sapiens.GRCh38.83.gtf”




	


	output_directory

	Google bucket url for the output folder

	“gs://fc-e0000000-0000-0000-0000-000000000000/output_refs”

	


	genome

	Output reference genome name. Output reference is a gzipped tarball with name genome_aligner.tar.gz

	“GRCm38_ens97filt”

	


	aligner

	Build indices for which aligner, choices are hisat2-hca, star, or bowtie2.

	“hisat2-hca”

	“hisat2-hca”



	smartseq2_version

	
SMART-Seq2 version to use.

Versions available: 1.1.0.

Versions obsoleted: 1.0.0.




	“1.1.0”

	“1.1.0”



	docker_registry

	Docker registry to use. Options:


	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.





	“quay.io/cumulus”

	“quay.io/cumulus”



	zones

	Google cloud zones

	“us-central1-c”

	“us-central1-b”



	cpu

	Number of CPUs

	Integer

	If aligner is bowtie2 or hisat2-hca, 8; otherwise 32



	memory

	Memory size string

	String

	If aligner is bowtie2 or hisat2-hca, “7.2G”; otherwise “120G”



	disk_space

	Disk space in GB

	Integer

	If aligner is bowtie2 or hisat2-hca, 40; otherwise 120



	preemptible

	Number of preemptible tries

	Integer

	2









Outputs








	Name

	Type

	Description





	output_reference

	File

	The custom Genome reference generated. Its default file name is genome_aligner.tar.gz.



	monitoring_log

	File

	CPU and memory profiling log.
















          

      

      

    

  

    
      
          
            
  
Bulk RNA-Seq


Run Bulk RNA-Seq Workflow

Follow the steps below to generate count matrices from bulk RNA-Seq data on Terra [https://app.terra.bio/]. This WDL estimates expression levels using RSEM.


	Copy your sequencing output to your workspace bucket using gsutil [https://cloud.google.com/storage/docs/gsutil] in your unix terminal.


You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

[image: _images/google_bucket_link.png]
Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab





The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil [https://cloud.google.com/storage/docs/gsutil] available by running:

reuse Google-Cloud-SDK





Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket.
For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4





-m means copy in parallel, -r means copy the directory recursively.






	Create a Terra data table [https://support.terra.bio/hc/en-us/articles/360025758392]


Example:

entity:sample_id  read1 read2
sample-1  gs://fc-e0000000/data-1/sample1-1_L001_R1_001.fastq.gz    gs://fc-e0000000/data-1/sample-1_L001_R2_001.fastq.gz
sample-2 gs://fc-e0000000/data-1/sample-2_L001_R1_001.fastq.gz  gs://fc-e0000000/data-1/sample-2_L001_R2_001.fastq.gz





You are free to add more columns, but sample ids and URLs to fastq files are required.






	Upload your TSV file to your workspace. Open the DATA tab on your workspace. Then click the upload button on left TABLE panel, and select the TSV file above. When uploading is done, you’ll see a new data table with name “sample”:


	Import bulk_rna_seq workflow to your workspace. Then open bulk_rna_seq in the WORKFLOW tab. Select Run workflow(s) with inputs defined by data table, and choose sample from the drop-down menu.





Inputs:

Please see the description of important inputs below. Note that required inputs are in bold.








	Name

	Description

	Default





	sample_name

	Sample name

	


	read1

	Array of URLs to read 1

	


	read2

	Array of URLs to read 2

	


	reference

	
	Reference to align reads to

	
	
	Pre-created genome references:

	
	“GRCh38_ens93filt” for human, genome version is GRCh38, gene annotation is generated using human Ensembl 93 GTF according to cellranger mkgtf [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references];


	“GRCm38_ens93filt” for mouse, genome version is GRCm38, gene annotation is generated using mouse Ensembl 93 GTF according to cellranger mkgtf [https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/advanced/references];










	Create a custom genome reference using smartseq2_create_reference workflow, and specify its Google bucket URL here.









	


	aligner

	Which aligner to use for read alignment. Options are “hisat2-hca”, “star” and “bowtie”

	“star”



	output_genome_bam

	Whether to output bam file with alignments mapped to genomic coordinates and annotated with their posterior probabilities.

	false











Outputs:







	Name

	Description





	rsem_gene

	RSEM gene expression estimation.



	rsem_isoform

	RSEM isoform expression estimation.



	rsem_trans_bam

	RSEM transcriptomic BAM.



	rsem_genome_bam

	RSEM genomic BAM files if output_genome_bam is true.



	rsem_time

	RSEM execution time log.



	aligner_log

	Aligner log.



	rsem_cnt

	RSEM count.



	rsem_model

	RSEM model.



	rsem_theta

	RSEM theta.














          

      

      

    

  

    
      
          
            
  
Drop-seq pipeline

This workflow follows the steps outlined in the Drop-seq alignment cookbook [https://github.com/broadinstitute/Drop-seq/blob/master/doc/Drop-seq_Alignment_Cookbook.pdf] from the McCarroll lab [http://mccarrolllab.org/dropseq-1/] , except the default STAR aligner flags are –limitOutSJcollapsed 1000000 –twopassMode Basic.
Additionally the pipeline provides the option to generate count matrices using  dropEst [https://github.com/hms-dbmi/dropEst].


	Copy your sequencing output to your workspace bucket using gsutil [https://cloud.google.com/storage/docs/gsutil] in your unix terminal.


You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

[image: _images/google_bucket_link.png]
Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag

Request an UGER node:

reuse UGER
qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab





The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you’re connected to an UGER node, you can make gsutil [https://cloud.google.com/storage/docs/gsutil] available by running:

reuse Google-Cloud-SDK





Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket.
For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4





-m means copy in parallel, -r means copy the directory recursively.






	Non Broad Institute users that wish to run bcl2fastq must create a custom docker image.


See bcl2fastq instructions.






	Create a sample sheet.


Please note that the columns in the CSV must be in the order shown below and does not contain a header line.
The sample sheet provides either the FASTQ files for each sample if you’ve already run bcl2fastq or a list of BCL directories if you’re starting from BCL directories.
Please note that BCL directories must contain a valid bcl2fastq sample sheet (SampleSheet.csv):







	Column

	Description





	Name

	Sample name.



	Read1

	Location of the FASTQ file for read1 in the cloud (gsurl).



	Read2

	Location of the FASTQ file for read2 in the cloud (gsurl).






Example using FASTQ input files:

sample-1,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-1/sample1-1_L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-1/sample-1_L001_R2_001.fastq.gz
sample-2,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-1/sample-2_L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-1/sample-2_L001_R2_001.fastq.gz
sample-1,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-2/sample1-1_L001_R1_001.fastq.gz,gs://fc-e0000000-0000-0000-0000-000000000000/dropseq-2/sample-1_L001_R2_001.fastq.gz





Note that in this example, sample-1 was sequenced across two flowcells.

Example using BCL input directories:

gs://fc-e0000000-0000-0000-0000-000000000000/flowcell-1
gs://fc-e0000000-0000-0000-0000-000000000000/flowcell-2





Note that the flow cell directory must contain a bcl2fastq sample sheet named SampleSheet.csv.






	Upload your sample sheet to the workspace bucket.


Example:

gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-0000-0000-000000000000/










	Import dropseq_workflow workflow to your workspace.


See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The dropseq_workflow is under Broad Methods Repository with name “cumulus/dropseq_workflow”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace you want to export dropseq_workflow workflow in the drop-down menu.






	In your workspace, open dropseq_workflow in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below


[image: _images/single_workflow.png]



and click the SAVE button.








Inputs

Please see the description of important inputs below.







	Name

	Description





	input_csv_file

	CSV file containing sample name, read1, and read2 or a list of BCL directories.



	output_directory

	Pipeline output directory (gs URL e.g. “gs://fc-e0000000-0000-0000-0000-000000000000/dropseq_output”)



	reference

	hg19, GRCh38, mm10, hg19_mm10, mmul_8.0.1 or a path to a custom reference JSON file



	run_bcl2fastq

	Whether your sample sheet contains one BCL directory per line or one sample per line (default false)



	run_dropseq_tools

	Whether to generate count matrixes using Drop-Seq tools from the McCarroll lab [http://mccarrolllab.org/dropseq-1/] (default true)



	run_dropest

	Whether to generate count matrixes using dropEst [https://github.com/hms-dbmi/dropEst] (default false)



	cellular_barcode_whitelist

	Optional whitelist of known cellular barcodes



	drop_seq_tools_force_cells

	If supplied, bypass the cell detection algorithm (the elbow method) and use this number of cells.



	dropest_cells_max

	Maximal number of output cells



	dropest_genes_min

	Minimal number of genes for cells after the merge procedure (default 100)



	dropest_min_merge_fraction

	Threshold for the merge procedure (default 0.2)



	dropest_max_cb_merge_edit_distance

	Max edit distance between barcodes (default 2)



	dropest_max_umi_merge_edit_distance

	Max edit distance between UMIs (default 1)



	dropest_min_genes_before_merge

	Minimal number of genes for cells before the merge procedure. Used mostly for optimization. (default 10)



	dropest_merge_barcodes_precise

	Use precise merge strategy (can be slow), recommended to use when the list of real barcodes is not available (default true)



	dropest_velocyto

	Save separate count matrices for exons, introns and exon/intron spanning reads (default true)



	trim_sequence

	The sequence to look for at the start of reads for trimming (default “AAGCAGTGGTATCAACGCAGAGTGAATGGG”)



	trim_num_bases

	How many bases at the beginning of the sequence must match before trimming occur (default 5)



	umi_base_range

	The base location of the molecular barcode (default 13-20)



	cellular_barcode_base_range

	The base location of the cell barcode (default 1-12)



	star_flags

	Additional options to pass to STAR aligner






Please note that run_bcl2fastq must be set to true if you’re starting from BCL files instead of FASTQs.


Custom Genome JSON

If you’re reference is not one of the predefined choices, you can create a custom JSON file. Example:

{
        "refflat":        "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/hg19_mm10_transgenes.refFlat",
        "genome_fasta":    "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/hg19_mm10_transgenes.fasta",
        "star_genome":    "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/STAR2_5_index_hg19_mm10.tar.gz",
        "gene_intervals":        "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/hg19_mm10_transgenes.genes.intervals",
        "genome_dict":    "gs://fc-e0000000-0000-0000-0000-000000000000/human_mouse/hg19_mm10_transgenes.dict",
        "star_cpus": 32,
        "star_memory": "120G"
}





The fields star_cpus and star_memory are optional and are used as the default cpus and memory for running STAR with your genome.






Outputs

The pipeline outputs a list of google bucket urls containing one gene-count matrix per sample. Each gene-count matrix file produced by Drop-seq tools has the suffix ‘dge.txt.gz’, matrices produced by dropEst have the extension .rds.


Building a Custom Genome

The tool dropseq_bundle can be used to build a custom genome.
Please see the description of important inputs below.







	Name

	Description





	fasta_file

	Array of fasta files. If more than one species, fasta and gtf files must be in the same order.



	gtf_file

	Array of gtf files. If more than one species, fasta and gtf files must be in the same order.



	genomeSAindexNbases

	Length (bases) of the SA pre-indexing string. Typically between 10 and 15. Longer strings will use much more memory, but allow faster searches. For small genomes, must be scaled down to min(14, log2(GenomeLength)/2 - 1)









dropseq_workflow Terra Release Notes

Version 11


	Added fastq_to_sam_memory and trim_bam_memory workflow inputs




Version 10


	Updated workflow to WDL version 1.0




Version 9


	Changed input bcl2fastq_docker_registry from optional to required




Version 8


	Added additional parameters for bcl2fastq




Version 7


	Added support for multi-species genomes (Barnyard experiments)




Version 6


	Added star_extra_disk_space and star_disk_space_multiplier workflow inputs to adjust disk space allocated for STAR alignment task.




Version 5


	Split preprocessing steps into separate tasks (FastqToSam, TagBam, FilterBam, and TrimBam).




Version 4


	Handle uncompressed fastq files as workflow input.


	Added optional prepare_fastq_disk_space_multiplier input.




Version 3


	Set default value for docker_registry input.




Version 2


	Added docker_registry input.




Version 1


	Renamed sccloud to cumulus


	Added use_bases_mask option when running bcl2fastq




Version 18


	Created a separate docker image for running bcl2fastq




Version 17


	Fixed bug that ignored WDL input star_flags (thanks to Carly Ziegler for reporting)


	Changed default value of star_flags to the empty string (Prior versions of the WDL incorrectly indicated that basic 2-pass mapping was done)




Version 16


	Use cumulus dockerhub organization


	Changed default dropEst version to 0.8.6




Version 15


	Added drop_deq_tools_prep_bam_memory and drop_deq_tools_dge_memory options




Version 14


	Fix for downloading files from user pays buckets




Version 13


	Set GCLOUD_PROJECT_ID for user pays buckets




Version 12


	Changed default dropEst memory from 52G to 104G




Version 11


	Updated formula for computing disk size for dropseq_count




Version 10


	Added option to specify merge_bam_alignment_memory and sort_bam_max_records_in_ram




Version 9


	Updated default drop_seq_tools_version from 2.2.0 to 2.3.0




Version 8


	Made additional options available for running dropEst




Version 7


	Changed default dropEst memory from 104G to 52G




Version 6


	Added option to run dropEst




Version 5


	Specify full version for bcl2fastq (2.20.0.422-2 instead of 2.20.0.422)




Version 4


	Fixed issue that prevented bcl2fastq from running




Version 3


	Set default run_bcl2fastq to false


	Create shortcuts for commonly used genomes




Version 2


	Updated QC report




Version 1


	Initial release







dropseq_bundle Terra Release Notes

Version 4


	Added create_intervals_memory and extra_star_flags inputs




Version 3


	Added extra disk space inputs


	Fixed bug that prevented creating multi-genome bundles




Version 2


	Added docker_registry input




Version 1


	Renamed sccloud to cumulus




Version 1


	Changed docker organization




Version 1


	Initial release












          

      

      

    

  

    
      
          
            
  
bcl2fastq


License

bcl2fastq license [https://support.illumina.com/content/dam/illumina-support/documents/downloads/software/bcl2fastq/bcl2fastq2-v2-20-eula.pdf]




Workflows

Workflows such as cellranger_workflow and dropseq_workflow provide the option of running bcl2fastq. We provide dockers
containing bcl2fastq that are accessible only by members of the Broad Institute. Non-Broad Institute members will have to provide
their own docker images. Please note that if you’re a Broad Institute member and are not able to pull the docker image, please check
https://app.terra.bio/#groups to see that you’re a member of the all_broad_users group. If not, please contact
Terra support and ask to be added to the all_broad_users@firecloud.org group.




Docker

Read this tutorial [https://docs.docker.com/get-started/] if you are new to Docker.

Then for a Debian based docker (e.g. continuumio/miniconda3 [https://hub.docker.com/r/continuumio/miniconda3]), create the Dockerfile as follows:

RUN apt-get update && apt-get install --no-install-recommends -y alien unzip
ADD bcl2fastq2-v2-20-0-linux-x86-64.zip /software/
RUN unzip -d /software/ /software/bcl2fastq2-v2-20-0-linux-x86-64.zip && alien -i /software/bcl2fastq2-v2.20.0.422-Linux-x86_64.rpm && rm /software/bcl2fastq2-v2*





Next, download bcl2fastq from the Illumina website [https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html],
which requires registration. Choose the Linux rpm file format and download
bcl2fastq2-v2-20-0-linux-x86-64.zip to the same directory as your Dockerfile.

You can host your private docker images in the Google Container Registry [https://cloud.google.com/container-registry/docs/].




Example

In this example we create a docker image for running cellranger mkfastq version 3.0.2.


	Create a GCP project or reuse an existing project.


	Enable the Google Container Registry


	Clone the cumulus repository:

git clone https://github.com/klarman-cell-observatory/cumulus.git







	Add the lines to cumulus/docker/cellranger/3.0.2/Dockerfile to include bcl2fastq (see Docker).


	Ensure you have Docker installed [https://www.docker.com/products/docker-desktop]


	Download cellranger from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.0


	Build, tag, and push the docker. Remember to replace PROJECT_ID with your GCP project id:

cd cumulus/docker/cellranger/3.0.2/
docker build -t cellranger-3.0.2 .
docker tag cellranger-3.0.2 gcr.io/PROJECT_ID/cellranger:3.0.2
gcr.io/PROJECT_ID/cellranger:3.0.2







	Import cellranger_workflow workflow to your workspace (see cellranger_workflow steps), and enter your docker registry URL (in this example, "gcr.io/PROJECT_ID/") in cellranger_mkfastq_docker_registry field of cellranger_workflow inputs.










          

      

      

    

  

    
      
          
            
  
Cell Ranger alternatives to generate gene-count matrices for 10X data

This count workflow generates gene-count matrices from 10X FASTQ data using alternative methods other than Cell Ranger.


Prepare input data and import workflow


1. Run cellranger_workflow to generate FASTQ data


You can skip this step if your data are already in FASTQ format.

Otherwise, you need to first run cellranger_workflow to generate FASTQ files from BCL raw data for each sample. Please follow cellranger_workflow manual.

Notice that you should set run_mkfastq to true to get FASTQ output. You can also set run_count to false if you want to skip Cell Ranger count, and only use the result from count workflow.

For Non-Broad users, you’ll need to build your own docker for bcl2fastq step. Instructions are here.







2. Import count


Import count workflow to your workspace.

See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The count workflow is under Broad Methods Repository with name “cumulus/count”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export count workflow in the drop-down menu.







3. Prepare a sample sheet


3.1 Sample sheet format:

The sample sheet for count workflow should be in TSV format, i.e. columns are seperated by tabs not commas. Please note that the columns in the TSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to identify flowcells and generate channel-specific count matrices.

A brief description of the sample sheet format is listed below (required column headers are shown in bold).







	Column

	Description





	Sample

	Contains sample names. Each 10x channel should have a unique sample name.



	Flowcells

	Indicates the Google bucket URLs of folder(s) holding FASTQ files of this sample.






The sample sheet supports sequencing the same 10x channel across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list all of its flowcells in a comma-seperated way. In the following example, we have 2 samples sequenced in two flowcells.

Example:

Sample  Flowcells
sample_1        gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4/sample_1_fastqs,gs://fc-e0000000-0000-0000-0000-000000000000/VK10WBC9Z2/sample_1_fastqs
sample_2        gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4/sample_2_fastqs





Moreover, if one flowcell of a sample contains multiple FASTQ files for each read, i.e. sequences from multiple lanes, you should keep your sample sheet as the same, and count workflow will automatically merge lanes altogether for the sample before performing counting.

3.2 Upload your sample sheet to the workspace bucket:

Use gsutil [https://cloud.google.com/storage/docs/gsutil] (you already have it if you’ve installed Google cloud SDK) in your unix terminal to upload your sample sheet to workspace bucket.

Example:

gsutil cp /foo/bar/projects/sample_sheet.tsv gs://fc-e0000000-0000-0000-0000-000000000000/











4. Launch analysis


In your workspace, open count in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Process single workflow from files as below


[image: _images/single_workflow.png]



and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.











Workflow inputs

Below are inputs for count workflow. Notice that required inputs are in bold.









	Name

	Description

	Example

	Default





	input_tsv_file

	Input TSV sample sheet describing metadata of each sample.

	“gs://fc-e0000000-0000-0000-0000-000000000000/sample_sheet.tsv”

	


	genome

	Genome reference name. Current support: GRCh38, mm10.

	“GRCh38”

	


	chemistry

	10X genomics’ chemistry name. Current support: “tenX_v3” (for V3 chemistry), “tenX_v2” (for V2 chemistry), “dropseq” (for Drop-Seq).

	“tenX_v3”

	


	output_directory

	GS URL of output directory.

	“gs://fc-e0000000-0000-0000-0000-000000000000/count_result”

	


	run_count

	If you want to run count tools to generate gene-count matrices.

	true

	true



	count_tool

	Count tool to generate result. Options:



	“StarSolo”: Use STARsolo [https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md].


	“Optimus”: Use Optimus [https://github.com/HumanCellAtlas/skylab/tree/master/pipelines/optimus] pipeline, developed by the Data Coordination Platform team of the Human Cell Atlas.


	“Bustools”: Use Kallisto BUSTools [https://www.kallistobus.tools/introduction].


	“Alevin”: Use Salmon Alevin [https://salmon.readthedocs.io/en/latest/alevin.html].








	“StarSolo”

	“StarSolo”



	docker_registry

	Docker registry to use. Notice that docker image for Bustools is seperate.



	“quay.io/cumulus” for images on Red Hat registry;


	“cumulusprod” for backup images on Docker Hub.








	“quay.io/cumulus”

	“quay.io/cumulus”



	config_version

	Version of config docker image to use. This docker is used for parsing the input sample sheet for downstream execution. Available options: 0.2, 0.1.

	“0.2”

	“0.2”



	zones

	Google cloud zones to consider for execution.

	“us-east1-d us-west1-a us-west1-b”

	“us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c”



	num_cpu

	
Number of CPUs to request for count per channel.

Notice that when use Optimus for count, this input only affects steps of copying files. Optimus uses CPUs due to its own strategy.




	32

	32



	disk_space

	
Disk space in GB needed for count per channel.

Notice that when use Optimus for count, this input only affects steps of copying files. Optimus uses disk space due to its own strategy.




	500

	500



	memory

	
Memory size in GB needed for count per channel.

Notice that when use Optimus for count, this input only affects steps of copying files. Optimus uses memory size due to its own strategy.




	120

	120



	preemptible

	
Number of maximum preemptible tries allowed.

Notice that when use Optimus for count, this input only affects steps of copying files. Optimus uses preemptible tries due to its own strategy.




	2

	2



	merge_fastq_memory

	Memory size in GB needed for merge fastq per channel.

	32

	32



	starsolo_star_version

	
STAR version to use. Currently only support “2.7.3a”.

This input only works when setting count_tool to StarSolo.




	“2.7.3a”

	“2.7.3a”



	alevin_version

	
Salmon version to use. Currently only support “1.1”.

This input only works when setting count_tool to Alevin.




	“1.1”

	“1.1”



	bustools_output_loom

	
If BUSTools generates gene-count matrices in loom format.

This input only works when setting count_tool to Bustools.




	false

	false



	bustools_output_h5ad

	
If BUSTools generates gene-count matrices in h5ad format.

This input only works when setting count_tool to Bustools.




	false

	false



	bustools_docker

	
Docker image used for Kallisto BUSTools count.

This input only works when setting count_tool to Bustools.




	“shaleklab/kallisto-bustools”

	“shaleklab/kallisto-bustools”



	bustools_version

	
kb version to use. Currently only support “0.24.4”.

This input only works when setting count_tool to Bustools.




	“0.24.4”

	“0.24.4”



	optimus_output_loom

	
If Optimus generates gene-count matrices in loom format.

This input only works when setting count_tool to Optimus.




	true

	true









Workflow outputs

See the table below for count workflow outputs.








	Name

	Type

	Description





	output_folder

	String

	Google Bucket URL of output directory. Within it, each folder is for one sample in the input sample sheet.












          

      

      

    

  

    
      
          
            
  
Topic modeling


Prepare input data

Follow the steps below to run topic_modeling on Terra [https://app.terra.bio/].


	Prepare your count matrix. Cumulus currently supports the following formats:  ‘zarr’, ‘h5ad’, ‘loom’, ‘10x’, ‘mtx’, ‘csv’, ‘tsv’ and ‘fcs’ (for flow/mass cytometry data) formats


	Upload your count matrix to the workspace.


Example:

gsutil cp /foo/bar/projects/dataset.h5ad gs://fc-e0000000-0000-0000-0000-000000000000/





where /foo/bar/projects/dataset.h5ad is the path to your dataset on your local machine, and
gs://fc-e0000000-0000-0000-0000-000000000000/ is the Google bucket destination.






	Import topic_modeling workflow to your workspace.


See the Terra documentation for adding a workflow [https://support.terra.bio/hc/en-us/articles/360025674392-Finding-the-tool-method-you-need-in-the-Methods-Repository]. The cumulus workflow is under Broad Methods Repository with name “cumulus/topic_modeling”.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export topic_modeling workflow in the drop-down menu.






	In your workspace, open topic_modeling in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below


[image: _images/single_workflow.png]



and click the SAVE button.








Workflow input

Inputs for the topic_modeling workflow are described below. Required inputs are in bold.









	Name

	Description

	Example

	Default





	input_file

	Google bucket URL of the input count matrix.

	“gs://fc-e0000000-0000-0000-0000-000000000000/my_dataset.h5ad”

	


	number_of_topics

	Array of number of topics.

	[10,15,20]

	


	prefix_exclude

	Comma separated list of features to exclude that start with prefix.

	“mt-,Rpl,Rps”

	“mt-,Rpl,Rps”



	min_percent_expressed

	Exclude features expressed below min_percent.

	2

	


	max_percent_expressed

	Exclude features expressed below min_percent.

	98

	


	random_number_seed

	Random number seed for reproducibility.

	0

	0









Workflow output








	Name

	Type

	Description





	coherence_plot

	File

	Plot of coherence scores vs. number of topics



	perplexity_plot

	File

	Plot of perplexity values vs. number of topics



	cell_scores

	Array[File]

	Topic by cells (one file for each topic number)



	feature_topics

	Array[File]

	Topic by features (one file for each topic number)



	report

	Array[File]

	HTML visualization report (one file for each topic number)



	stats

	Array[File]

	Computed coherence and perplexity (one file for each topic number)



	model

	Array[File]

	Serialized LDA model (one file for each topic number)



	corpus

	File

	Serialized corpus



	dictionary

	File

	Serialized dictionary












          

      

      

    

  

    
      
          
            
  
Contributions

We welcome contributions to our repositories that make up the Cumulus ecosystem:


	pegasus [https://github.com/klarman-cell-observatory/pegasus]


	pegasusio [https://github.com/klarman-cell-observatory/pegasusio]


	demuxEM [https://github.com/klarman-cell-observatory/demuxEM]


	cumulus [https://github.com/klarman-cell-observatory/cumulus]


	cumulus_feature_barcoding [https://github.com/klarman-cell-observatory/cumulus_feature_barcoding]


	scPlot [https://github.com/klarman-cell-observatory/scPlot]


	altocumulus [https://github.com/klarman-cell-observatory/altocumulus]


	cirrocumulus [https://github.com/klarman-cell-observatory/cirrocumulus]




In addition to the Cumulus team, we would like to sincerely thank the following contributors:







	Name

	Note





	Kirk Gosik

	Assistance with topic modeling workflow










          

      

      

    

  

    
      
          
            
  
Contact us

If you have any questions related to Cumulus, please feel free to contact us via Cumulus Support Google Group.
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alto sample-sheet

alto sample-sheet creates a sample sheet.


Synopsis

alto sample-sheet [OPTION]... dir





where dir can be one or more directories to look for fastq files. Directories are searched recursively for fastq files.




Options







	Name

	Description





	
-f

–format




	Sample sheet format. Can be directory, r1_r2, r1_r2_i1. For cellranger, use directory, for drop-seq, use r1_r2



	
-o

–output




	Output sample sheet











alto fc-upload

alto fc-upload uploads local files/directories to your Terra workspace Google Cloud bucket.

Your sample sheet can point to local file paths and alto upload will take care of uploading directories (e.g. fastq directories) and modifying the sample sheet to point to a Google Cloud bucket.


Synopsis

alto fc-upload [OPTION]... file





where file can be one or more files, such as a sample sheet or an input JSON.




Options







	Name

	Description





	
-w

–workspace




	Workspace name (e.g. foo/bar). The workspace will be created if it does not exist



	–dry-run

	Causes upload to run in “dry run” mode, i.e., just outputting what would be uploaded without actually doing any uploading.






Example: Upload fastq directories and sample sheet, convert sample sheet paths to gs:// URLs.

example_sample_sheet.txt:







	s1

	/mylocalpath/flowcell1/s1



	s2

	/mylocalpath/flowcell1/s2



	s1

	/mylocalpath/flowcell2/s1






command:

alto upload -w myworkspace_namespace/myworkspace_name example_sample_sheet.txt










alto fc-inputs

alto fc-inputs generates a stub JSON input file that can be used as input to alto run. The JSON file can optionally be based on a published method config.


Options







	Name

	Description





	
-m

–method




	Method namespace/name (e.g. cumulus/cellranger_workflow). A version can optionally be specified (e.g. cumulus/cellranger_workflow/4), otherwise the latest version of the method is used.



	
-c

–config




	Repository config to use for generating input.json stub (e.g. regev/drop-seq-MMUL_8_0_1



	
-o

–out




	JSON output file






Example: Generate a stub JSON file based on the published config for running Drop-Seq using the MMUL_8_0_1 genome:

alto fc-inputs -m regev/drop-seq -c regev/drop-seq-MMUL_8_0_1











          

      

      

    

  

    
      
          
            
  
Cumulus WDL workflows and Dockerfiles

[image: Release] [https://github.com/klarman-cell-observatory/cumulus/releases] [image: License] [https://github.com/klarman-cell-observatory/cumulus/blob/master/LICENSE] [image: Docs] [https://cumulus.readthedocs.io/]

All of our docker images are publicly available on Quay [https://quay.io/organization/cumulus] and Docker Hub [https://cloud.docker.com/u/cumulusprod/]. Our workflows use Quay as the
default Docker registry. Users can use Docker Hub as the Docker registry by entering cumulusprod for the workflow
input “docker_registry”, or enter a custom registry name of their own choice.

If you use Cumulus in your research, please consider citing:

Li, B., Gould, J., Yang, Y. et al. “Cumulus provides cloud-based data analysis for large-scale single-cell and
single-nucleus RNA-seq”. Nat Methods 17, 793–798 (2020). https://doi.org/10.1038/s41592-020-0905-x





          

      

      

    

  

    
      
          
            
  
Version 1.2.0 January 19, 2021


	
	Add spaceranger workflow:

	
	Wrap up spaceranger version 1.2.1










	
	On cellranger workflow:

	
	Fix workflow WDL to support both single index and dual index


	Add support for cellranger version 5.0.0 and 5.0.1


	Add support for targeted gene expression analysis


	Add support for --include-introns and --no-bam options for cellranger count


	Remove --force-cells option for cellranger vdj as noted in cellranger 5.0.0 release note


	Add GRCh38_vdj_v5.0.0 and GRCm38_vdj_v5.0.0 references










	Bug fix on cumulus workflow.


	Reorganize the sidebar of Cumulus documentation website.







Version 1.1.0 December 28, 2020


	
	On cumulus workflow:

	
	Add CITE-Seq data analysis back. (See section Run CITE-Seq analysis for details)


	Add doublet detection. (See infer_doublets, expected_doublet_rate, and doublet_cluster_attribute input fields)


	For tSNE visualization, only support FIt-SNE algorithm. (see run_tsne and plot_tsne input fields)


	Improve efficiency on log-normalization and DE tests.


	Support multiple marker JSON files used in cell type annotation. (see organism input field)


	More preset gene sets provided in gene score calculation. (see calc_signature_scores input field)










	
	Add star_solo workflow (see STARsolo section for details):

	
	Use STARsolo [https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md] to generate count matrices from FASTQ files.


	Support chemistry protocols such as 10X-V3, 10X-V2, DropSeq, and SeqWell.










	Update the example of analyzing hashing and CITE-Seq data (see Example section) with the new workflows.


	Bug fix.







Version 1.0.0 September 23, 2020


	Add demultiplexing workflow for cell-hashing/nucleus-hashing/genetic-pooling analysis.


	Add support on CellRanger version 4.0.0.


	
	Update cumulus workflow with Pegasus version 1.0.0:

	
	Use zarr file format to handle data, which has a better I/O performance in general.


	Support focus analysis on Unimodal data, and appending other Unimodal data to it. (focus and append inputs in cluster step).


	Quality-Control: Change percent_mito default from 10.0 to 20.0; by default remove bounds on UMIs (min_umis and max_umis inputs in cluster step).


	Quality-Control: Automatically figure out name prefix of mitochondrial genes for GRCh38 and mm10 genome reference data.


	Support signature / gene module score calculation. (calc_signature_scores input in cluster step)


	Add Scanorama method to batch correction. (correction_method input in cluster step).


	Calculate UMAP embedding by default, instead of FIt-SNE.


	Differential Expression (DE) analysis: remove inputs mwu and auc as they are calculated by default. And cell-type annotation uses MWU test result by default.










	Remove cumulus_subcluster workflow.







Version 0.15.0 May 6, 2020


	Update all workflows to OpenWDL version 1.0.


	Cumulus now supports multi-job execution from Terra data table input.


	Cumulus generates Cirrocumulus input in .cirro folder, instead of a huge .parquet file.







Version 0.14.0 February 28, 2020


	Added support for gene-count matrices generation using alternative tools (STARsolo, Optimus, Salmon alevin, Kallisto BUStools).


	Cumulus can process demultiplexed data with remapped singlets names and subset of singlets.


	Update VDJ related inputs in Cellranger workflow.


	SMART-Seq2 and Count workflows are in OpenWDL version 1.0.







Version 0.13.0 February 7, 2020


	Added support for aggregating scATAC-seq samples.


	Cumulus now accepts mtx format input.







Version 0.12.0 December 14, 2019


	Added support for building references for sc/snRNA-seq, scATAC-seq, single-cell immune profiling, and SMART-Seq2 data.







Version 0.11.0 December 4, 2019


	Reorganized Cumulus documentation.







Version 0.10.0 October 2, 2019


	scCloud is renamed to Cumulus.


	Cumulus can accept either a sample sheet or a single file.







Version 0.7.0 Feburary 14, 2019


	Added support for 10x genomics scATAC assays.


	scCloud runs FIt-SNE as default.







Version 0.6.0 January 31, 2019


	Added support for 10x genomics V3 chemistry.


	Added support for extracting feature matrix for Perturb-Seq data.


	Added R script to convert output_name.seurat.h5ad to Seurat object. Now the raw.data slot stores filtered raw counts.


	Added min_umis and max_umis to filter cells based on UMI counts.


	Added QC plots and improved filtration spreadsheet.


	Added support for plotting UMAP and FLE.


	Now users can upload their JSON file to annotate cell types.


	Improved documentation.


	Added lightGBM based marker detection.







Version 0.5.0 November 18, 2018


	Added support for plated-based SMART-Seq2 scRNA-Seq data.







Version 0.4.0 October 26, 2018


	Added CITE-Seq module for analyzing CITE-Seq data.







Version 0.3.0 October 24, 2018


	Added the demuxEM module for demultiplexing cell-hashing/nuclei-hashing data.







Version 0.2.0 October 19, 2018


	Added support for V(D)J and CITE-Seq/cell-hashing/nuclei-hashing.







Version 0.1.0 July 27, 2018


	KCO tools released!
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