Cumulus Documentation

Release 2.3.0

Bo Li, Joshua Gould, and et al.

Contents

1 Release Highlights in Current Stable

3

All of our docker images are publicly available on Quay and Docker Hub. Our workflows use Quay as the default Docker registry. Users can use Docker Hub as the Docker registry by entering cumulusprod for the workflow input "docker_registry", or enter a custom registry name of their own choice.

If you use Cumulus in your research, please consider citing:

Li, B., Gould, J., Yang, Y. et al. "Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq". *Nat Methods* **17**, 793–798 (2020). https://doi.org/10.1038/s41592-020-0905-x

Contents 1

2 Contents

CHAPTER 1

Release Highlights in Current Stable

1.1 2.3.0 October 30, 2022

New Features:

• Add support for Fixed RNA Profiling to Cellranger workflow.

Updates:

- In Cellranger workflow:
 - Upgrade *cellranger_version* default to 7.0.1.
 - Upgrade *cellranger_arc_version* default to 2.0.2.
- In Cellranger_create_reference workflow: upgrade *cellranger_version* default to 7.0.1.
- In Cellranger_vdj_create_reference workflow: upgrade *cellranger_version* default to 7.0.1.

1.1.1 First Time Running on Terra

Authenticate with Google

If you've done this before you can skip this step - you only need to do this once.

1. Ensure the gcloud CLI is installed on your computer.

Note: Broad users do not have to install this-they can type:

```
reuse Google-Cloud-SDK
```

to make the Google Cloud tools available.

2. Execute the following command to login to Google Cloud.:

```
gcloud auth login
```

- 3. Copy and paste the link in your unix terminal into your web browser.
- 4. Enter authorization code in unix terminal.

Create a Terra workspace

1. Create a new Terra workspace by clicking Create New Workspace in Terra

Further reading: Terra tutorials.

1.1.2 Cumulus workflows overview

Cumulus workflows are written in WDL language, and published on Dockstore. Below is an overview of them:

Workflow	First Ver-	Date	Function
	sion	Added	
Cellranger	0.1.0	2018-07-	Run Cell Ranger tools, which include extracting sequence reads
		27	using cellranger mkfastq or cellranger-atac mkfastq, generating
			count matrix using cellranger count or cellranger-atac count, run-
			ning cellranger vdj or feature-barcode extraction.
Spaceranger	1.2.0	2021-01-	Run Space Ranger tools to process spatial transcriptomics data,
		19	which includes extracting sequence reads using spaceranger mk-
			fastq, and generating count matrix using spaceranger count.
STARsolo	1.2.0	2021-01-	Run STARsolo to generate gene-count matrices fro FASTQ files.
		19	
GeoMx_fastq_to_do	c2.2.0	2022-10-	Run Nanostring GeoMx Digital Spatial NGS Pipeline, and con-
		04	vert FASTQ files into DCC files.
GeoMx_dcc_to_cou	n 2.2 n 0 trix	2022-10-	Take the DCC zip file from GeoMxFastqToDCC workflow, as
		04	well as other output of GeoMx DSP machine as the input, and
			generate an Area Of Interest (AOI) by probe count matrix with
			pathologists' annotation.
Demultiplexing	0.3.0	2018-10-	Run tools (demuxEM, souporcell, or popscle) for cell-
		24	hashing/nucleus-hashing/genetic-pooling analysis.
Cumulus	0.1.0	2018-07-	Run cumulus analysis module for variable gene selection, batch
		27	correction, PCA, diffusion map, clustering, visualization, differ-
			ential expression analysis, cell type annotation, etc.
Cellbender	2.1.0	2022-07-	Run CellBender tool to remove technical artifacts from high-
		13	throughput single-cell/single-nucleus RNA sequencing data.
Cellranger_create_re	ef0rd2c0	2019-12-	Run Cell Ranger tools to build sc/snRNA-seq references.
		14	
Cellranger_atac_cre	at 0<u>.</u>1 2f 0 rence	2019-12-	Run Cell Ranger tools to build scATAC-seq references.
11	0.12.0	14	
cellranger_vdj_creat	te <u>O</u> r & £££ence	2019-12-	Run Cell Ranger tools to build single-cell immune profiling ref-
CEL D. 1	02.0.0	14	erences.
STARsolo_create_re	t e n o e	2022-03-	Run STAR to build sc/snRNA-seq references for STARsolo
G 11	0.12.0	14	count.
Cellranger_atac_agg	r0.13.0	2020-02-	Run Cell Ranger tools to aggregate scATAC-seq samples.
G . G .	0.50	07	D 1110 100 100 1 0 D 000 1
Smart-Seq2	0.5.0	2018-11-	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count ma-
G.	0.12.0	18	trices for SMART-Seq2 data from FASTQ files.
Smart-	0.12.0	2019-12-	Generate user-customized genome references for SMART-Seq2
Seq2_create_referen	ice	14	data.

Legacy versions on Broad Method Registry

As Cumulus is now switched to Dockstore for release, we no longer maintain the Cumulus workflows published on Broad Method Registry.

But Terra users can still check out the legacy snapshots listed below for usage.

Stable version - v1.5.1

WDL	Snapshot	Function
cumulus/cellranger_workflow	28	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generating count
		matrix using cellranger count or cellranger-atac count, running cell-
		ranger vdj or feature-barcode extraction.
cumulus/spaceranger_workflow	3	Run Space Ranger tools to process spatial transcriptomics data,
		which includes extracting sequence reads using spaceranger mk-
		fastq, and generating count matrix using spaceranger count.
cumulus/star_solo	7	Run STARsolo to generate gene-count matrices fro FASTQ files.
cumulus/count	18	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/demultiplexing	32	Run tools (demuxEM, souporcell, or popscle) for cell-
		hashing/nucleus-hashing/genetic-pooling analysis.
cumulus/cellranger_create_refere	ncle()	Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	5	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_1		Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	10	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files.
cumulus/smartseq2_create_referende		Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	43	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.

Stable version - v1.5.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	26	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generating count
		matrix using cellranger count or cellranger-atac count, running cell-
		ranger vdj or feature-barcode extraction.
cumulus/spaceranger_workflow	3	Run Space Ranger tools to process spatial transcriptomics data,
		which includes extracting sequence reads using spaceranger mk-
		fastq, and generating count matrix using spaceranger count.
cumulus/star_solo	7	Run STARsolo to generate gene-count matrices fro FASTQ files.
cumulus/count	18	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/demultiplexing	31	Run tools (demuxEM, souporcell, or popscle) for cell-
		hashing/nucleus-hashing/genetic-pooling analysis.
cumulus/cellranger_create_reference0		Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	5	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_r	eference	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	10	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files.
cumulus/smartseq2_create_reference		Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	43	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.

Stable version - v1.4.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	26	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generating count
		matrix using cellranger count or cellranger-atac count, running cell-
		ranger vdj or feature-barcode extraction.
cumulus/spaceranger_workflow	3	Run Space Ranger tools to process spatial transcriptomics data,
		which includes extracting sequence reads using spaceranger mk-
		fastq, and generating count matrix using spaceranger count.
cumulus/star_solo	6	Run STARsolo to generate gene-count matrices fro FASTQ files.
cumulus/count	18	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/demultiplexing	30	Run tools (demuxEM, souporcell, or popscle) for cell-
		hashing/nucleus-hashing/genetic-pooling analysis.
cumulus/cellranger_create_reference0		Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	5	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_r	eference	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	10	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files.
cumulus/smartseq2_create_referende		Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	41	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.

Stable version - v1.3.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	15	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generating count
		matrix using cellranger count or cellranger-atac count, running cell-
		ranger vdj or feature-barcode extraction.
cumulus/spaceranger_workflow	1	Run Space Ranger tools to process spatial transcriptomics data,
		which includes extracting sequence reads using spaceranger mk-
		fastq, and generating count matrix using spaceranger count.
cumulus/star_solo	3	Run STARsolo to generate gene-count matrices fro FASTQ files.
cumulus/count	18	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/demultiplexing	22	Run tools (demuxEM, souporcell, or demuxlet) for cell-
		hashing/nucleus-hashing/genetic-pooling analysis.
cumulus/cellranger_create_reference		Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	2	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_r	eærence	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	7	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files.
cumulus/smartseq2_create_reference		Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	36	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.

Stable version - v1.2.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	15	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generating count
		matrix using cellranger count or cellranger-atac count, running cell-
		ranger vdj or feature-barcode extraction.
cumulus/spaceranger_workflow	1	Run Space Ranger tools to process spatial transcriptomics data,
		which includes extracting sequence reads using spaceranger mk-
		fastq, and generating count matrix using spaceranger count.
cumulus/star_solo	3	Run STARsolo to generate gene-count matrices fro FASTQ files.
cumulus/count	18	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/demultiplexing	22	Run tools (demuxEM, souporcell, or demuxlet) for cell-
		hashing/nucleus-hashing/genetic-pooling analysis.
cumulus/cellranger_create_reference		Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	2	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_reference		Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	7	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files.
cumulus/smartseq2_create_reference		Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	35	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
	1	

Stable version - v1.1.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	14	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/star_solo	3	Run STARsolo to generate gene-count matrices fro FASTQ files.
cumulus/count	16	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/demultiplexing	21	Run tools (demuxEM, souporcell, or demuxlet) for cell-
		hashing/nucleus-hashing/genetic-pooling analysis.
cumulus/cellranger_create_refere	nce	Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	2	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_r	eference	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference		Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	7	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_refere	n&e	Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	34	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.

Stable version - v1.0.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	12	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/count	14	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/demultiplexing	20	Run tools (demuxEM, souporcell, or demuxlet) for cell-
		hashing/nucleus-hashing/genetic-pooling analysis.
cumulus/cellranger_create_refere	nce	Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	2	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_reference		Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference		Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	7	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_refere	n&e	Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	31	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_hashing_cite_seq 0		Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

Stable version - v0.15.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	10	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/count	14	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/cellranger_create_refere	næ	Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	2	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_1	eference	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference		Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	7	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_reference		Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	24	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	16	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_seq 0		Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

Stable version - v0.14.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	8	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/count	11	Run alternative tools (STARsolo, Optimus, Salmon alevin, or
		Kallisto BUStools) to generate gene-count matrices from FASTQ
		files.
cumulus/cellranger_create_refere	nce	Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	1	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_1	eference	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_reference		Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	7	Run HISAT2/STAR/Bowtie2-RSEM to generate gene-count matri-
		ces for SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_refere	n&e	Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	16	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	10	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_se@		Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

Stable version - v0.13.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	7	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/cellranger_create_refere	nde	Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_aggr	1	Run Cell Ranger tools to aggregate scATAC-seq samples.
cumulus/cellranger_atac_create_r	eference	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	5	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_refere	nele	Generate user-customized genome references for SMART-Seq2
		data.
cumulus/cumulus	14	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	9	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_s	eq	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

Stable version - v0.12.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	6	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/cellranger_create_refere	nde	Run Cell Ranger tools to build sc/snRNA-seq references.
cumulus/cellranger_atac_create_1	eference	Run Cell Ranger tools to build scATAC-seq references.
cumulus/cellranger_vdj_create_re	ference	Run Cell Ranger tools to build single-cell immune profiling refer-
		ences.
cumulus/smartseq2	5	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/smartseq2_create_refere	nele	Generate user-customized genome references for SMART-Seq2
		workflow.
cumulus/cumulus	11	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	8	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_s	еф	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

Stable version - v0.11.0

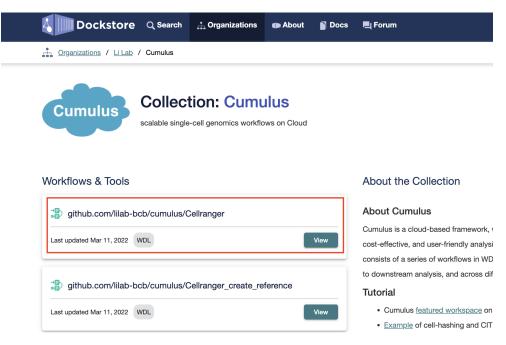
WDL	Snapshot	Function
cumulus/cellranger_workflow	4	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/smartseq2	3	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/cumulus	8	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	5	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_s	еф	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

Stable version - v0.10.0

WDL	Snapshot	Function
cumulus/cellranger_workflow	3	Run Cell Ranger tools, which include extracting sequence reads us-
		ing cellranger mkfastq or cellranger-atac mkfastq, generate count
		matrix using cellranger count or cellranger-atac count, run cell-
		ranger vdj or feature-barcode extraction
cumulus/smartseq2	3	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
cumulus/cumulus	7	Run cumulus analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering, visualization, differential
		expression analysis, cell type annotation, etc.
cumulus/cumulus_subcluster	4	Run subcluster analysis using cumulus
cumulus/cumulus_hashing_cite_s	ed	Run cumulus for cell-hashing/nucleus-hashing/CITE-Seq analysis

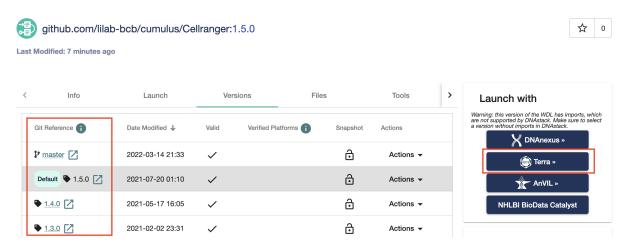
Stable version - HTAPP v2

WDL	Snapshot	Function
regev/cellranger_mkfastq_count	45	Run Cell Ranger to extract FASTQ files and generate gene-count
		matrices for 10x genomics data
scCloud/smartseq2	5	Run Bowtie2 and RSEM to generate gene-count matrices for
		SMART-Seq2 data from FASTQ files
scCloud/scCloud	14	Run scCloud analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering and more
scCloud/scCloud_subcluster	9	Run subcluster analysis using scCloud
scCloud/scCloud_hashing_cite_se	q 9	Run scCloud for cell-hashing/nucleus-hashing/CITE-Seq analysis


Stable version - HTAPP v1

WDL	Snapshot	Function
regev/cellranger_mkfastq_count	39	Run Cell Ranger to extract FASTQ files and generate gene-count
		matrices for 10x genomics data
scCloud/scCloud	3	Run scCloud analysis module for variable gene selection, batch cor-
		rection, PCA, diffusion map, clustering and more

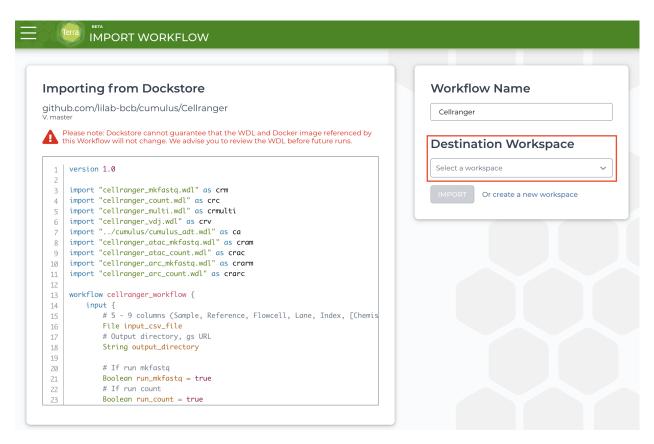
1.1.3 Import workflows to Terra


Cumulus workflows are hosted on Dockstore under the organization of *Li Lab*. For illustration, we'll use *Cellranger* workflow to show how to import Cumulus workflows to your Terra workspace.

1. Select Cellranger workflow from Cumulus workflow collection by clicking its "View" button:

Notice that all Cumulus workflows have github.com/lilab-bcb/cumulus/ prefix, which indicates they are imported from Cumulus GitHub repo to Dockstore.

2. In the workflow page, by switching to "Versions" tab, you can view all the available versions of *Cellranger* workflow, where the default version is on the top:

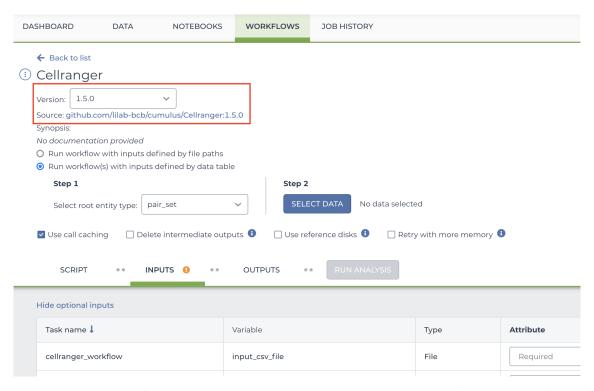


To change to a non-default version, simply clicking the version name in "Git Reference" column. After that, click "Terra" button on the right panel.

Note: The **master** version refers to the development branch of Cumulus workflows, which is always under rapid change.

For stable usage, please always refer to a released version.

3. You'll be asked to log in to Terra if not. Then you can see the following page:



In "Destination Workspace" drop-down menu on the right panel, you can select the target Terra workspace to import *CellRanger* workflow. Optionally, you can even rename the workflow in "Workflow Name" field. When everything is done, click "IMPORT" button below to finish.

4. When finished, you can see Cellranger workflow appearing in "WORKFLOWS" tab of your Terra workspace:

Moreover, in its workflow page (as below)

you can even switch the workflow's version in "Version" drop-down menu, and click the link in "Source" field to view the workflow's WDL source code.

1.1.4 Release notes

Version 2.3

2.3.0 October 30, 2022

New Features:

• Add support for Fixed RNA Profiling to Cellranger workflow.

Updates:

- In Cellranger workflow:
 - Upgrade *cellranger_version* default to 7.0.1.
 - Upgrade *cellranger_arc_version* default to 2.0.2.
- In Cellranger_create_reference workflow: upgrade cellranger_version default to 7.0.1.
- In Cellranger_vdj_create_reference workflow: upgrade cellranger_version default to 7.0.1.

Version 2.2

2.2.0 October 4, 2022

New Features:

• Add Nanostring GeoMx DSP workflows. It consists of two steps:

- GeoMx_fastq_to_dcc workflow to convert FASTQ files into DCC files by wrapping Nanostring GeoMx Digital Spatial NGS Pipeline.
- GeoMx_dcc_to_count_matrix workflow to generate probe count matrix from DCC files with pathologists' annotation.

Updates:

- Spaceranger workflow:
 - Add support on 10x Space Ranger v2.0.0.
 - Add human_probe_v2 Probe Set for FFPE samples, which is compatible with CytAssist FFPE samples.
- Upgrade cumulus_feature_barcoding_version default to v0.11.0 for Feature Barcoding in Cellranger workflow.

API Changes:

- Across all workflows, for AWS backend:
 - All workflows now have awsQueueArn input, which is used for explicitly specifying the Arn string of an AWS Compute Environment.
 - Remove awsMaxRetries input for all workflows. Namely, use Cromwell's default value 0.

Bug Fix:

• Fix the issue on localizing GCP folders in Cellranger workflow for ATAC-Seq and 10x Multiome data.

Version 2.1

2.1.1 July 18, 2022

• Make *cumulus* workflow work with Cromwell v81+.

2.1.0 July 13, 2022

New Features:

- · Add CellBender workflow for ambient RNA removal.
- · CellRanger:
 - For ATAC-Seq data, add ARC-v1 chemistry keyword for analyzing only the ATAC part of 10x multiome data. See CellRanger scATAC-seq sample sheet section for details.
 - For antibody/hashing/citeseq/crispr data, add multiome chemistry keyword for the feature barcoding on 10x multiome data.
- STARsolo:
 - In workflow output, besides mtx format gene-count matrices, the workflow also generates matrices in 10x-compatible hdf5 format.

Improvements:

- CellRanger: For antibody/hashing/citeseq/crispr data,
 - cumulus_feature_barcoding v0.9.0+ now supports multi-threading and faster gzip file I/O.

• Workflows check if output_directory is a valid Cloud URI based on the given backend value before execution. (Feature request #322)

Updates:

- Genome Reference:
 - Add Cellranger VDJ v7.0.0 genome references: GRCh38_vdj_v7.0.0 and GRCm38_vdj_v7.0.0 in CellRanger scIR-seq sample sheet section.
- Default version upgrade:
 - Update *cellranger* default to v7.0.0.
 - Update cellranger-atac default to v2.1.0.
 - Update cellranger-arc default to v2.0.1.
 - Update cumulus_feature_barcoding default to v0.10.0.
 - STARsolo workflow uses STAR v2.7.10a by default.

Version 2.0

2.0.0 March 14, 2022

Overall:

- Cumulus workflows are now released on Dockstore:
 - Add the tutorial on importing Cumulus workflows to Terra.
 - Archive the legacy versions on Broad Method Registry.
- Add support on multiple platforms via **backend** input: gcp for Google Cloud, aws for Amazon AWS, local for local machine. Enable Google Cloud support by default.
- For Amazon AWS backend, add **awsMaxRetries** input to set the maximum retries allowed for job execution at runtime. By default, use 5.
- Update the command-line job submission tutorial to work with Altocumulus v2.0.0 or later.
- On Examples:
 - Update gene expression, hashing and CITE-Seq example tutorial.
 - Add tutorial on 10x CellPlex analysis using Cumulus workflows on Cloud.

Workflow-specific:

- Add STARsolo_create_reference workflow to build genome references for STARsolo counting. See its documentation for details.
- On Cellranger workflow:
 - Add support for 10x Cell Ranger version 6.1.1 and 6.1.2, and use 6.1.2 by default. See Cell Ranger v6.1 release notes.
 - Add support for 10x Cell Ranger ARC version 2.0.1, and use it by default. See Cell Ranger ARC v2.0 release notes for the release notes.
 - Upgrade cumulus_feature_barcoding to version 0.7.0 to allow manually set barcode starting position (via input crispr_barcode_pos).

- Add support for non 10x CRISPR assays. See the description of crispr DataType value in this section for details.
- For input data consisting of fastq files, it's able to handle folder structure of both flat (all fastq files in one folder) and nested (one subfolder per sample listed in the input sample sheet) forms.
- Add fastq_outputs to workflow output, which contains mkfastq step output folders for samples listed in the input sample sheet.
- Add count_outputs to workflow output, which contains count step output folderrs for samples listed in the input sample sheet.

• On Spaceranger workflow:

- Add support for 10x Space Ranger version 1.3.0 and 1.3.1, and use 1.3.1 by default. See Space Ranger v1.3 release notes for the release notes.
- For input data consisting of fastq files, it's able to handle folder structure of both flat (all fastq files in one folder) and nested (one subfolder per library) forms.
- Add output section for the workflow. See here for details.
- Retire old genome references:
 - * Keep GRCh38-2020-A and mm10-2020-A.
 - * Retire GRCh38, mm10, GRCh38-2020-A-premrna and mm10-2020-A-premrna. Users can still reach out to Cumulus team to ask for URIs to these old references, but they are not provided by default.
- In the description of **ReorientImages** field of input sample sheet, add the information on its valid values.

• On STARsolo workflow:

- Add support for STAR version 2.7.9a, and use it by default. See STAR v2.7.9a release notes for the release notes.
- Reorganize the workflow by exposing more inputs to users.
- Add support on more protocols: 10x multiome, 10x 5' (both SC5P-R2 and SC5P-PE), Slide-Seq and Share-Seq. See *here* <./starsolo.html#prepare-a-sample-sheet> for details.
- Use input read1_fastq_pattern and read2_fastq_pattern to support fastq files generated by Cell Ranger or SeqWell, as well as Sequence Read Archive (SRA) data.
- For input data consisting of fastq files, it's able to handle folder structure of both flat (all fastq files in one folder) and nested (one subfolder per library) forms.
- Do not attach filename prefix to output files to avoid the incorrect SJ raw *feature.tsv* symlink error, which would cause the folder delocalization fail. (see discussion with STAR team)
- Add STAR log file to workflow output. This is the Log.out file if running STAR locally, which can be used
 for tracking the process and sharing with STAR team when opening an issue there.
- Retire old genome references:
 - * Keep GRCh38-2020-A, mm10-2020-A, and GRCh38-and-mm10-2020-A.
 - * Retire old references listed here. Users can still reach out to Cumulus team to ask for URIs to them, but they are not provided by default.
- On Demultiplexing workflow:
 - Upgrade demuxEM to version 0.1.7 for bug fix.
- On Cellranger create reference workflow:

- Add the generated reference file to the workflow output.
- Bug fix in using input **memory**.
- Update documentation to suggest only using Cell Ranger version 6.1.1 or later for building reference, as v6.0.1 has issues which leave the job running without terminating.
- On *Cellranger_atac_create_reference* workflow:
 - Add the generated reference file to the workflow output.
- On Cellranger_vdj_create_reference workflow:
 - Add the generated reference file to the workflow output.

Version 1.x

Version 1.5.1 September 15, 2021

• Fix the issue of WDLs after Terra platform updates the Cromwell engine.

Version 1.5.0 July 20, 2021

- · On demultiplexing workflow
 - Update demuxEM to v0.1.6.
- · On cumulus workflow
 - Add Nonnegative Matrix Factorization (NMF) feature: run_nmf and nmf_n inputs.
 - Add integrative NMF (iNMF) data integration method: inmf option in correction_method input; the number of expected factors is also specified by nmf_n input.
 - When NMF or iNMF is enabled, word cloud plots and gene program UMAP plots of NMF/iNMF results will be generated.
 - Update *Pegasus* to v1.4.2.

Version 1.4.0 May 17, 2021

· On cellranger workflow

- Add support for multiomics analysis using linked samples, cellranger-arc count, cellranger multi and cellranger count will be automatically triggered based on the sample sheet
- Add support for cellranger version 6.0.1 and 6.0.0
- Add support for cellranger-arc version 2.0.0, 1.0.1, 1.0.0
- Add support for cellranger-atac version 2.0.0
- Add support for cumulus_feature_barcoding version 0.6.0, which handles CellPlex CMO tags
- Add GRCh38-2020-A_arc_v2.0.0, mm10-2020-A_arc_v2.0.0, GRCh38-2020-A_arc_v1.0.0 and mm10-2020-A_arc_v1.0.0 references for cellranger-arc.
- Fixed bugs in cellranger_atac_create_reference

- Add delete undetermined FASTQs option for mkfastq

· On demultiplexing workflow

- Replace demuxlet with popscle, which includes both demuxlet and freemuxlet

· On cumulus workflow

- Fixed bug that remap_singlets and subset_singlets don't work when input is in sample sheet format.
- Modified workflows to remove trailing spaces and support spaces within output_directory

Version 1.3.0 February 2, 2021

• On cumulus workflow:

- Change cumulus_version to pegasus_version to avoid confusion.
- Update to use Pegasus v1.3.0 for analysis.

Version 1.2.0 January 19, 2021

• Add spaceranger workflow:

- Wrap up spaceranger version 1.2.1

• On cellranger workflow:

- Fix workflow WDL to support both single index and dual index
- Add support for cellranger version 5.0.1 and 5.0.0
- Add support for targeted gene expression analysis
- Add support for --include-introns and --no-bam options for cellranger count
- Remove --force-cells option for cellranger vdj as noted in cellranger 5.0.0 release note
- Add GRCh38_vdj_v5.0.0 and GRCm38_vdj_v5.0.0 references
- Bug fix on cumulus workflow.
- Reorganize the sidebar of Cumulus documentation website.

Version 1.1.0 December 28, 2020

• On cumulus workflow:

- Add CITE-Seq data analysis back. (See section Run CITE-Seq analysis for details)
- Add doublet detection. (See infer_doublets, expected_doublet_rate, and doublet_cluster_attribute input fields)
- For tSNE visualization, only support FIt-SNE algorithm. (see run_tsne and plot_tsne input fields)
- Improve efficiency on log-normalization and DE tests.
- Support multiple marker JSON files used in cell type annotation. (see organism input field)

- More preset gene sets provided in gene score calculation. (see calc_signature_scores input field)
- Add star_solo workflow (see STARsolo section for details):
 - Use STARsolo to generate count matrices from FASTQ files.
 - Support chemistry protocols such as 10X-V3, 10X-V2, DropSeq, and SeqWell.
- Update the example of analyzing hashing and CITE-Seq data (see Example section) with the new workflows.
- Bug fix.

Version 1.0.0 September 23, 2020

- Add demultiplexing workflow for cell-hashing/nucleus-hashing/genetic-pooling analysis.
- Add support on CellRanger version 4.0.0.
- Update cumulus workflow with Pegasus version 1.0.0:
 - Use zarr file format to handle data, which has a better I/O performance in general.
 - Support focus analysis on Unimodal data, and appending other Unimodal data to it. (focus and append inputs in *cluster* step).
 - Quality-Control: Change percent_mito default from 10.0 to 20.0; by default remove bounds on UMIs (min_umis and max_umis inputs in *cluster* step).
 - Quality-Control: Automatically figure out name prefix of mitochondrial genes for GRCh38 and mm10 genome reference data.
 - Support signature / gene module score calculation. (calc_signature_scores input in cluster step)
 - Add Scanorama method to batch correction. (correction_method input in cluster step).
 - Calculate UMAP embedding by default, instead of FIt-SNE.
 - Differential Expression (DE) analysis: remove inputs mwu and auc as they are calculated by default. And cell-type annotation uses MWU test result by default.
- Remove *cumulus_subcluster* workflow.

Version 0.x

Version 0.15.0 May 6, 2020

- Update all workflows to OpenWDL version 1.0.
- Cumulus now supports multi-job execution from Terra data table input.
- Cumulus generates Cirrocumulus input in .cirro folder, instead of a huge .parquet file.

Version 0.14.0 February 28, 2020

- Added support for gene-count matrices generation using alternative tools (STARsolo, Optimus, Salmon alevin, Kallisto BUStools).
- Cumulus can process demultiplexed data with remapped singlets names and subset of singlets.
- Update VDJ related inputs in Cellranger workflow.
- SMART-Seq2 and Count workflows are in OpenWDL version 1.0.

Version 0.13.0 February 7, 2020

- Added support for aggregating scATAC-seq samples.
- Cumulus now accepts mtx format input.

Version 0.12.0 December 14, 2019

 Added support for building references for sc/snRNA-seq, scATAC-seq, single-cell immune profiling, and SMART-Seq2 data.

Version 0.11.0 December 4, 2019

Reorganized Cumulus documentation.

Version 0.10.0 October 2, 2019

- scCloud is renamed to Cumulus.
- Cumulus can accept either a sample sheet or a single file.

Version 0.7.0 Feburary 14, 2019

- Added support for 10x genomics scATAC assays.
- scCloud runs FIt-SNE as default.

Version 0.6.0 January 31, 2019

- Added support for 10x genomics V3 chemistry.
- · Added support for extracting feature matrix for Perturb-Seq data.
- Added R script to convert output_name.seurat.h5ad to Seurat object. Now the raw.data slot stores filtered raw counts.
- Added min_umis and max_umis to filter cells based on UMI counts.
- Added QC plots and improved filtration spreadsheet.
- Added support for plotting UMAP and FLE.
- Now users can upload their JSON file to annotate cell types.

- Improved documentation.
- Added lightGBM based marker detection.

Version 0.5.0 November 18, 2018

• Added support for plated-based SMART-Seq2 scRNA-Seq data.

Version 0.4.0 October 26, 2018

Added CITE-Seq module for analyzing CITE-Seq data.

Version 0.3.0 October 24, 2018

• Added the demuxEM module for demultiplexing cell-hashing/nuclei-hashing data.

Version 0.2.0 October 19, 2018

• Added support for V(D)J and CITE-Seq/cell-hashing/nuclei-hashing.

Version 0.1.0 July 27, 2018

• KCO tools released!

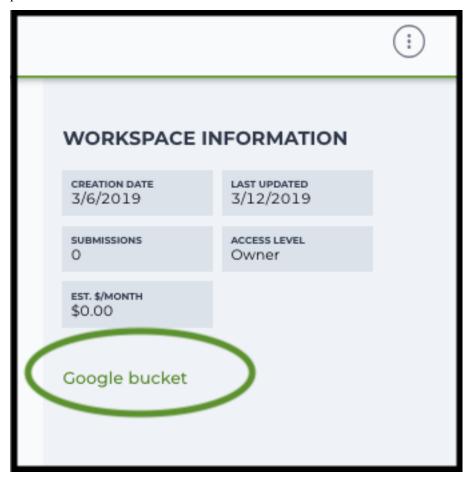
1.1.5 Run Cell Ranger tools using cellranger_workflow

cellranger_workflow wraps Cell Ranger to process single-cell/nucleus RNA-seq, single-cell ATAC-seq and single-cell immune profiling data, and supports feature barcoding (cell/nucleus hashing, CITE-seq, Perturb-seq). It also provide routines to build cellranger references.

A general step-by-step instruction

This section mainly considers jobs starting from BCL files. If your job starts with FASTQ files, and only need to run cellranger count part, please refer to this subsection.

1. Import cellranger_workflow


Import *cellranger_workflow* workflow to your workspace by following instructions in Import workflows to Terra. You should choose workflow **github.com/lilab-bcb/cumulus/CellRanger** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_workflow* workflow in the drop-down menu.

2. Upload sequencing data to Google bucket

Copy your sequencing output to your workspace bucket using gsutil (you already have it if you've installed Google cloud SDK) in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

Note: If input is a folder of BCL files, users do not need to upload the whole folder to the Google bucket. Instead, they only need to upload the following files:

RunInfo.xml RTAComplete.txt

(continues on next page)

(continued from previous page)

runParameters.xml
Data/Intensities/s.locs
Data/Intensities/BaseCalls

If data are generated using MiSeq or NextSeq, the location files are inside lane subfloders L001 under Data/Intensities/. In addition, if users' data only come from a subset of lanes (e.g. L001 and L002), users only need to upload lane subfolders from the subset (e.g. Data/Intensities/BaseCalls/L001, Data/Intensities/BaseCalls/L002 and Data/Intensities/L001, Data/Intensities/L002 if sequencer is MiSeq or NextSeq).

Alternatively, users can submit jobs through command line interface (CLI) using altocumulus, which will smartly upload BCL folders according to the above rules.

3. Prepare a sample sheet

3.1 Sample sheet format:

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to demultiplex flowcells and generate channel-specific count matrices. Note that *Sample*, *Lane*, and *Index* columns are defined exactly the same as in 10x's simple CSV layout file.

A brief description of the sample sheet format is listed below (**required column headers are shown in bold**).

28

Column	Description
Sample	Contains sample names. Each 10x channel should have a unique sample name. Sample
_	name can only contain characters from [a-zA-Z0-9].
Reference	
	Provides the reference genome used by Cell Ranger for each 10x channel.
	The elements in the <i>reference</i> column can be either Google bucket URLs to reference
	tarballs or keywords such as <i>GRCh38-2020-A</i> .
	A full list of available keywords is included in each of the following data type sections
	(e.g. sc/snRNA-seq) below.
Flowcell	
	Indicates the Goods bucket LIDLs of unloaded DCL folders
	Indicates the Google bucket URLs of uploaded BCL folders. If starts with EASTO flee this should be Google bucket URLs of uploaded EASTO.
	If starts with FASTQ files, this should be Google bucket URLs of uploaded FASTQ folders.
	The FASTQ folders should contain one subfolder for each sample in the flowcell with
	the sample name as the subfolder name.
	Each subfolder contains FASTQ files for that sample.
	Zuen sustrater contains 17351 & mes for that sample.
Lane	
	Tells which lanes the sample was pooled into.
	Can be either single lane (e.g. 8) or a range (e.g. 7-8) or all (e.g. *).
Index	Sample index (e.g. SI-GA-A12).
Chemistry	Describes the 10x chemistry used for the sample. This column is optional.
DataType	
	Describes the data type of the sample — rna, vdj, citeseq, hashing, cmo, crispr, atac.
	rna refers to gene expression data (cellranger count),
	vdj refers to V(D)J data (cellranger vdj),
	citeseq refers to CITE-Seq tag data,
	hashing refers to cell-hashing or nucleus-hashing tag data,
	adt , which refers to the case where <i>hashing</i> and <i>citeseq</i> reads are in a sample library.
	cmo refers to cell multiplexing oligos used in 10x Genomics' CellPlex assay,
	crispr refers to Perturb-seq guide tag data,
	atac refers to scATAC-Seq data (cellranger-atac count),
	frp refers to Fixed RNA Profiling (FRP) gene expression data,
	This column is optional and the default data type is <i>rna</i> .
	This column is optional and the default data type is thu.
ProbeSet	Probe set reference for FRP samples. Currently FRP_human_probe_v1 is the only
	available and thus the default reference. Only works for samples of <i>DataType</i> frp.
FeatureBarco	odeFile
	Google bucket urls pointing to feature barcode files for rna, citeseq, hashing, cmo and
	crispr data.
	Features can be either targeted genes for targeted gene expression analysis, antibody
	for CITE-Seq, cell-hashing, nucleus-hashing or gRNA for Perburb-seq.
	If <i>cmo</i> data is analyzed separately using <i>cumulus_feature_barcoding</i> , file format
	should follow the guide in Feature barcoding assays section, otherwise follow the
	guide in Single-cell multiomics section.
	This column is only required for targeted gene expression analysis (rna), CITE-Seq
	(citeseq), cell-hashing or nucleus-hashing (hashing), CellPlex (cmo) and Perturb-seq
	(crispr). Chapter 1. Release Highlights in Current
Link	
LIIIK	

Designed for Single Cell Multiome ATAC + Gene Expression, Feature Barcoding,

The sample sheet supports sequencing the same 10x channels across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list it in multiple rows, with one flowcell per row. In the following example, we have 4 samples sequenced in two flowcells.

Example:

```
Sample, Reference, Flowcell, Lane, Index, Chemistry, DataType
→VK18WBC6Z4,1-2,SI-GA-A8,threeprime,rna
→VK18WBC6Z4,3-4,SI-GA-B8,SC3Pv3,rna
sample_3,mm10-2020-A,qs://fc-e0000000-0000-0000-0000-00000000000/VK18WBC6Z4,
\hookrightarrow 5-6, SI-GA-C8, fiveprime, rna
sample_4,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-00000000000/VK18WBC6Z4,
\hookrightarrow 7-8, SI-GA-D8, fiveprime, rna
→VK10WBC9Z2, 1-2, SI-GA-A8, threeprime, rna
→VK10WBC9Z2,3-4,SI-GA-B8,SC3Pv3,rna
sample_3, mm10-2020-A, qs://fc-e0000000-0000-0000-0000-00000000000/VK10WBC9Z2,
\hookrightarrow 5-6, SI-GA-C8, fiveprime, rna
sample_4,mm10-2020-A,qs://fc-e0000000-0000-0000-0000-00000000000/VK10WBC9Z2,
\hookrightarrow 7-8, SI-GA-D8, fiveprime, rna
```

3.2 Upload your sample sheet to the workspace bucket:

Example:

4. Launch analysis

In your workspace, open cellranger_workflow in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Run workflow with inputs defined by file paths as below

- Run workflow with inputs defined by file paths
- Run workflow(s) with inputs defined by data table

and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.

5. Notice: run cellranger mkfastq if you are non Broad Institute users

Non Broad Institute users that wish to run cellranger mkfastq must create a custom docker image that contains bcl2fastq.

See *bcl2fastq* instructions.

6. Run cellranger count only

Sometimes, users might want to perform demultiplexing locally and only run the count part on the cloud. This section describes how to only run the count part via cellranger_workflow.

- 1. Copy your FASTQ files to the workspace using gsutil in your unix terminal. There are two cases:
 - Case 1: All the FASTQ files are in one top-level folder. Then you can simply upload this folder to Cloud, and in your sample sheet, make sure **Sample** names are consistent with the filename prefix of their corresponding FASTQ files.
 - Case 2: In the top-level folder, each sample has a dedicated subfolder containing its FASTQ files. In this case, you need to upload the whole top-level folder, and in your sample sheet, make sure **Sample** names and their corresponding subfolder names are identical.

Notice that if your FASTQ files are downloaded from the Sequence Read Archive (SRA) from NCBI, you must rename your FASTQs to follow the bcl2fastq file naming conventions.

Example:

```
gsutil -m cp -r /foo/bar/fastq_path/K18WBC6Z4 gs://fc-e0000000-

→0000-0000-0000-000000000000/K18WBC6Z4_fastq
```

- 2. Create a sample sheet following the similar structure as above, except the following differences:
 - Flowcell column should list Google bucket URLs of the FASTQ folders for flowcells.
 - Lane and Index columns are NOT required in this case.

Example:

3. Set optional input run_mkfastq to false.

7. Workflow outputs

See the table below for workflow level outputs.

Name	Туре	Description
fastq_outputs	Array[Array[String]?]	The top-level array contains results (as arrays) for
		different data modalities. The inner-level array
		contains cloud locations of FASTQ files, one url
		per flowcell.
count_outputs	Array[Array[String]?]	The top-level array contains results (as arrays) for
		different data modalities. The inner-level array
		contains cloud locations of count matrices, one
		url per sample.
count_matrix	String	Cloud url for a template count_matrix.csv to run
		Cumulus. It only contains sc/snRNA-Seq sam-
		ples.

Single-cell and single-nucleus RNA-seq

To process sc/snRNA-seq data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scRNA-seq references are summarized below.

Keyword	Description		
GRCh38-2020-	Human GRCh38 (GENCODE v32/Ensembl 98)		
A			
mm10-2020-A	Mouse mm10 (GENCODE vM23/Ensembl 98)		
GRCh38_and_mi	mH0+man GRCh38 (GENCODE v32/Ensembl 98) and mouse mm10 (GEN-		
2020-A	CODE vM23/Ensembl 98)		
GRCh38_v3.0.0	Human GRCh38, cellranger reference 3.0.0, Ensembl v93 gene annotation		
hg19_v3.0.0	Human hg19, cellranger reference 3.0.0, Ensembl v87 gene annotation		
mm10_v3.0.0	Mouse mm10, cellranger reference 3.0.0, Ensembl v93 gene annotation		
GRCh38_and_m	8_and_mmH0_m3a1(GRCh38) and mouse (mm10), cellranger references 3.1.0, Ensembl		
	v93 gene annotations for both human and mouse		
hg19_and_mm10	LYBOOK (hg19) and mouse (mm10), cellranger reference 3.0.0, Ensembl v93		
	gene annotations for both human and mouse		
GRCh38_v1.2.0	Human GRCh38, cellranger reference 1.2.0, Ensembl v84 gene annotation		
or GRCh38			
hg19_v1.2.0 or	Human hg19, cellranger reference 1.2.0, Ensembl v82 gene annotation		
hg19			
mm10_v1.2.0 or	Mouse mm10, cellranger reference 1.2.0, Ensembl v84 gene annotation		
mm10	W0 4401 1 11.6 CDC120 1 10 11 6		
	mH0_man2a0d mouse, built from GRCh38 and mm10 cellranger references, En-		
or	sembl v84 gene annotations are used		
GRCh38_and_mi			
GRUNS8_and_SA	REGULATION TO SARS-COV-2 RNA genome, cellranger reference 3.0.0,		
	generated by Carly Ziegler. The SARS-COV-2 viral sequence and gtf are as described in [Kim et al. Cell 2020] (https://github.com/hyeshik/		
	sars-cov-2-transcriptome, BetaCov/South Korea/KCDC03/2020 based on		
	NC_045512.2). The GTF was edited to include only CDS regions, and re-		
	gions were added to describe the 5' UTR ("SARSCoV2_5prime"), the 3'		
	UTR ("SARSCoV2_3prime"), and reads aligning to anywhere within the		
	Negative Strand("SARSCoV2_NegStrand"). Additionally, trailing A's at the		
	3' end of the virus were excluded from the SARSCoV2 fasta, as these were		
	found to drive spurious viral alignment in pre-COVID19 samples.		
	Tours to arre sparrous that argument in pro CO (121) samples.		

Pre-built snRNA-seq references are summarized below.

Keyword	Description		
GRCh38_premrr	a Evaluation , introns included, built from GRCh38 cellranger reference 3.0.0, En-		
	sembl v93 gene annotation, treating annotated transcripts as exons		
GRCh38_premrr	GRCh38_premrnaHch2.0, introns included, built from GRCh38 cellranger reference 1.2.0, En-		
or	sembl v84 gene annotation, treating annotated transcripts as exons		
GRCh38_premrna			
mm10_premrna_	vM20 se, introns included, built from mm10 cellranger reference 1.2.0, En-		
or	sembl v84 gene annotation, treating annotated transcripts as exons		
mm10_premrna			
GRCh38_premrr	aHamdamandOmporesen rinar ords 2i.0 cluded, built from GRCh38_premrna_v1.2.0		
or	and mm10_premrna_v1.2.0		
GRCh38_premrr	GRCh38_premrna_and_mm10_premrna		
GRCh38_premrr	a Hamda SARS Go Vi2 cluded, built from GRCh38_premrna_v3.0.0, and SARS-		
	COV-2 RNA genome. This reference was generated by Carly Ziegler.		
	The SARS-COV-2 RNA genome is from [Kim et al. Cell 2020]		
	(https://github.com/hyeshik/sars-cov-2-transcriptome, BetaCov/South Ko-		
	rea/KCDC03/2020 based on NC_045512.2). Please see the description of		
	GRCh38_and_SARSCoV2 above for details.		

2. Index column.

Put 10x single cell RNA-seq sample index set names (e.g. SI-GA-A12) here.

3. Chemistry column.

According to cellranger count's documentation, chemistry can be

Chemistry	Explanation
auto	autodetection (default). If the index read has extra bases besides cell barcode
	and UMI, autodetection might fail. In this case, please specify the chemistry
threeprime	Single Cell 3
fiveprime	Single Cell 5
SC3Pv1	Single Cell 3 v1
SC3Pv2	Single Cell 3 v2
SC3Pv3	Single Cell 3 v3. You should set cellranger version input parameter to >=
	3.0.2
SC5P-PE	Single Cell 5 paired-end (both R1 and R2 are used for alignment)
SC5P-R2	Single Cell 5 R2-only (where only R2 is used for alignment)

4. DataType column.

This column is optional with a default **rna**. If you want to put a value, put **rna** here.

5. FetureBarcodeFile column.

Put target panel CSV file here for targeted expressiond data. Note that if a target panel CSV is present, cell ranger version must be >= 4.0.0.

6. Example:

(continues on next page)

(continued from previous page)

```
sample_2,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-000000000000/VK18WBC6Z4,5-6,

→SI-GA-C8,fiveprime,rna
sample_2,mm10-2020-A,gs://fc-e0000000-0000-0000-0000-00000000000/VK10WBC9Z2,5-6,

→SI-GA-C8,fiveprime,rna
sample_3,GRCh38-2020-A,gs://fc-e0000000-0000-0000-0000-00000000000/VK18WBC6Z4,3,

→SI-TT-A1,auto,rna,gs://fc-e0000000-0000-0000-000000000000/VK18WBC6Z4,3,

→GRCh38-2020-A.target_panel.csv
```

Workflow input

For sc/snRNA-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cellranger count. Revalant workflow inputs are described below, with required inputs highlighted in bold.

NameDescription	Example	Default
input Samplide Sheet (contains Sample,	"gs://fc-e0000000-	
Reference, Flowcell, Lane, In-	0000-0000-0000-	
dex as required and Chemistry,	0000000000000/sample_sheet.csv"	
DataType, FeatureBarcodeFile as		
optional)		
outpu <u>Oudipectory</u> ctory	"gs://fc-e0000000-	Results are written
	0000-0000-0000-	under directory out-
	0000000000000/cellranger_output"	put_directory and
		will overwrite any
		existing files at this
		location.
run_mlkfxxstq want to run cellranger	true	true
mkfastq		
run_cdfinytou want to run cellranger	true	true
count		
delete If notate to B Cdirditectories after de-	false	false
mux. If false, you should delete		
this folder yourself so as to not in-		
cur storage charges		
nkfas tvuhbre odor <u>f</u> mismatthess allowed	0	
in matching barcode indices		
(bcl2fastq2 default is 1)		
nkfas lq_foxesusiphhed_in7/ex paired in-	false	false
	Taise	laise
dices are specified, but the flow-		
cell was run with only one sam-		
ple index, allow the demultiplex		
to proceed using the i7 half of the		
sample index pair		C 1
mkfast Qnfyltdersinglplendea mples iden-	false	false
tified by an i7-only sample in-		
dex, ignoring dual-indexed sam-		
ples. Dual-indexed samples will		
not be demultiplexed		
mkfas@versedbathesrendslengths as spec-	"Y28n*,I8n*,N10,Y90n*"	
ified in RunInfo.xml		
nkfast <u>qeldetdetendetteleteirneithEASTQ</u> files	true	false
generated by bcl2fastq2		
Force_Eollise pipeline to use this number	6000	
of cells, bypassing the cell detec-		
tion algorithm, mutually exclusive		
with expect_cells		
expectExplisted number of recovered	3000	
cells. Mutually exclusive with		
force_cells		
ncludatumtnomis option on to also count	true	true
reads mapping to intronic regions.	uuc	uuc
11 0		
With this option, users do not		
need to use pre-mRNA refer-		
ences. Note that if this option		
is set, cellranger_version must be		
>= 5.0.0.		
no_baffurn this option on to disable	false	false
BAM file generation. This op-		
tion is only available if cell-	01	
ranger_version \geq 5.0.0.	Chapter 1. Release H	ighlights in Current Sta
econdary Cell Ranger secondary	false	false
analysis (dimensionality reduc-		
tion, clustering, etc.)		

Workflow output

See the table below for important sc/snRNA-seq outputs.

Name	Туре	Description
cellranger_mkfastq.output_	fa stqs<u>a</u>y[Becitog])?	Subworkflow output. A list of cloud urls containing
		FASTQ files, one url per flowcell.
cellranger_count.output_co	un A_rday(Story g]?	Subworkflow output. A list of cloud urls containing
		gene count matrices, one url per sample.
cellranger_count.output_we	b_Asurays[Hairlye]?	Subworkflow output. A list of htmls visualizing QCs for
		each sample (cellranger count output).
collect_summaries.metrics_	s ufiile faries	Task output. A excel spreadsheet containing QCs for
		each sample.
count_matrix	String	Workflow output. Cloud url for a template
		count_matrix.csv to run Cumulus.

Feature barcoding assays (cell & nucleus hashing, CITE-seq and Perturb-seq)

cellranger_workflow can extract feature-barcode count matrices in CSV format for feature barcoding assays such as *cell and nucleus hashing*, *CellPlex*, *CITE-seq*, and *Perturb-seq*. For cell and nucleus hashing as well as CITE-seq, the feature refers to antibody. For Perturb-seq, the feature refers to guide RNA. Please follow the instructions below to configure cellranger_workflow.

Prepare feature barcode files

Prepare a CSV file with the following format: feature_barcode,feature_name. See below for an example:

```
TTCCTGCCATTACTA, sample_1
CCGTACCTCATTGTT, sample_2
GGTAGATGTCCTCAG, sample_3
TGGTGTCATTCTTGA, sample_4
```

The above file describes a cell hashing application with 4 samples.

If cell hashing and CITE-seq data share a same sample index, you should concatenate hashing and CITE-seq barcodes together and add a third column indicating the feature type. See below for an example:

```
TTCCTGCCATTACTA, sample_1, hashing
CCGTACCTCATTGTT, sample_2, hashing
GGTAGATGTCCTCAG, sample_3, hashing
TGGTGTCATTCTTGA, sample_4, hashing
CTCATTGTAACTCCT, CD3, citeseq
GCGCAACTTGATGAT, CD8, citeseq
```

Then upload it to your google bucket:

Sample sheet

1. **Reference** column.

This column is not used for extracting feature-barcode count matrix. To be consistent, please put the reference for the associated scRNA-seq assay here.

2. Index column.

The ADT/HTO index can be either Illumina index primer sequence (e.g. ATTACTCG, also known as D701), or 10x single cell RNA-seq sample index set names (e.g. SI-GA-A12).

Note 1: All ADT/HTO index sequences (including 10x's) should have the same length (8 bases). If one index sequence is shorter (e.g. ATCACG), pad it with P7 sequence (e.g. ATCACGAT).

Note 2: It is users' responsibility to avoid index collision between 10x genomics' RNA indexes (e.g. SI-GA-A8) and Illumina index sequences for used here (e.g. ATTACTCG).

Note 3: For NextSeq runs, please reverse complement the ADT/HTO index primer sequence (e.g. use reverse complement CGAGTAAT instead of ATTACTCG).

3. Chemistry column.

The following keywords are accepted for *Chemistry* column:

Chemistry	Explanation
auto	Default. This is an alias for Single Cell 3' v3 (SC3Pv3)
threeprime	This is another alias for Single Cell 3' v3
SC3Pv3	Single Cell 3 v3
SC3Pv2	Single Cell 3 v2
fiveprime	Single Cell 5
SC5P-PE	Single Cell 5 paired-end (both R1 and R2 are used for alignment)
SC5P-R2	Single Cell 5 R2-only (where only R2 is used for alignment)
multiome	10x Multiome barcodes

4. DataType column.

The following keywords are accepted for *DataType* column:

DataType	Explanation
citeseq	CITE-seq
hashing	Cell or nucleus hashing
cmo	CellPlex
adt	Hashing and CITE-seq are in the same library
crispr	
	Perturb-seq/CROP-seq If neither crispr_barcode_pos nor scaffold_sequence (see Workflow input) is set, crispr refers to 10x CRISPR assays. If in addition Chemistry is set to be SC3Pv3 or its aliases, Cumulus automatically complement the middle two bases to convert 10x feature barcoding cell barcodes back to 10x RNA cell barcodes. Otherwise, crispr refers to non 10x CRISPR assays, such as CROP-Seq. In this case, we assume feature barcoding cell barcodes are the same as the RNA cell barcodes and no cell barcode convertion will be conducted.

5. FetureBarcodeFile column.

Put Google Bucket URL of the feature barcode file here.

6. Example:

In the sample sheet above, despite the header row,

- First row describes the normal 3' RNA assay;
- Second row describes its associated antibody tag data, which can from either a CITE-seq, cell hashing, or nucleus hashing experiment.
- Third row describes another tag data, which is in 10x genomics' V3 chemistry. For tag and crispr data, it is important to explicitly state the chemistry (e.g. SC3Pv3).
- Last row describes one gRNA guide data for Perturb-seq (see crispr in DataType field).

Workflow input

For feature barcoding data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cumulus adt. Revalant workflow inputs are described below, with required inputs highlighted in bold.

NameDescription	Example	Default
nput Samplide Sheet (contains Sample,	"gs://fc-e0000000-	
Reference, Flowcell, Lane, In-	0000-0000-0000-	
dex as required and Chemistry,	0000000000000/sample_sheet.csv"	
DataType, FeatureBarcodeFile as		
optional)		
outpuO_ulipectbryctory	"gs://fc-e0000000-	
	0000-0000-0000-	
	0000000000000/cellranger_output"	
run_mlkfysstog want to run cellranger	true	true
mkfastq		ti do
run_cdfintyou want to run cumulus	true	true
adt	uuc	truc
	false	false
delete <u>If repute to Big Clindintenty</u> ories after de-	Taise	Taise
mux. If false, you should delete		
this folder yourself so as to not in-		
cur storage charges		
mkfastvjuhrbreodef_mismattdhess allowed	0	
in matching barcode indices		
(bcl2fastq2 default is 1)		
mkfas lo<u>f</u> foxes_upiplikd_iin7/e5 paired in-	false	false
dices are specified, but the flow-		
cell was run with only one sam-		
ple index, allow the demultiplex		
to proceed using the i7 half of the		
sample index pair		
nkfas@nfiltedersinktlpleindeamples iden-	false	false
	Taise	Taise
tified by an i7-only sample in-		
dex, ignoring dual-indexed sam-		
ples. Dual-indexed samples will		
not be demultiplexed		
mkfas@verseidbathesrendslengths as spec-	"Y28n*,I8n*,N10,Y90n*"	
ified in RunInfo.xml		
mkfasiloeldetetendeteleteineidnEASTQ files	true	false
generated by bcl2fastq2		
erispr Brancoodle spans position at Read 2	19	0
(0-based coordinate) for CRISPR		
scaffoldensequence in sgRNA for	"GTTTAAGAGCTAAGCTGGAA"	, ,,,
	OTTIAAUAUCIAAUCIUUAA	
Purturb-seq, only used for crispr		
data type.		
max_nMsuxiatulm hamming distance in	2	2
feature barcodes for the adt task		
(changed to 2 as default)		
min relation read count ratio (non-	0.1	0.1
inclusive) to justify a feature		
given a cell barcode and feature		
combination, only used for the adt		
task and crispr data type		
cellrangedrangsionersion, could be 7.0.1,	"7.0.1"	"7.0.1"
7.0.0, 6.1.2, 6.1.1, 6.0.2, 6.0.1,	7.0.1	/.0.1
6.0.0, 5.0.1, 5.0.0	"0.11.0"	(O 11 O)
cumulGarfadturefdaturedhagcodinionver-	"0.11.0"	"0.11.0"
sion for extracting feature barcode		
matrix. Version available: 0.11.0,		
0.10.0, 0.9.0, 0.8.0, 0.7.0, 0.6.0,	01	
1	Chapter 1. Release H	ignlights in Current S
0.5.0, 0.4.0, 0.3.0, 0.2.0.		
0.5.0, 0.4.0, 0.3.0, 0.2.0. lockeDockistryegistry to use for cell-	"quay.io/cumulus"	"quay.io/cumulus"
0.5.0, 0.4.0, 0.3.0, 0.2.0. docket Dockistryegistry to use for cell-ranger_workflow. Options:	"quay.io/cumulus"	"quay.io/cumulus"

Parameters used for feature count matrix extraction

If the chemistry is V2, 10x genomics v2 cell barcode white list will be used, a hamming distance of 1 is allowed for matching cell barcodes, and the UMI length is 10. If the chemistry is V3, 10x genomics v3 cell barcode white list will be used, a hamming distance of 0 is allowed for matching cell barcodes, and the UMI length is 12.

For Perturb-seq data, a small number of sgRNA protospace sequences will be sequenced ultra-deeply and we may have PCR chimeric reads. Therefore, we generate filtered feature count matrices as well in a data driven manner:

- 1. First, plot the histogram of UMIs with certain number of read counts. The number of UMIs with x supporting reads decreases when x increases. We start from x = 1, and a valley between two peaks is detected if we find count[x] < count[x + 1] < count[x + 2]. We filter out all UMIs with < x supporting reads since they are likely formed due to chimeric reads.
- 2. In addition, we also filter out barcode-feature-UMI combinations that have their read count ratio, which is defined as total reads supporting barcode-feature-UMI over total reads supporting barcode-UMI, no larger than min_read_ratio parameter set above.

Workflow outputs

See the table below for important outputs.

Name	Type	Description
cellranger_mkfastq.output_	fa stqs<u>a</u>y[Becitog] /?	Subworkflow output. A list of cloud urls containing
		FASTQ files, one url per flowcell.
cumulus_adt.output_count_	diAartayi[String]?	Subworkflow output. A list of cloud urls containing
		feature-barcode count matrices, one url per sample.

In addition, For each antibody tag or crispr tag sample, a folder with the sample ID is generated under output_directory. In the folder, two files — sample_id.csv and sample_id.stat.csv.gz — are generated.

sample_id.csv is the feature count matrix. It has the following format. The first line describes the column names: Antibody/CRISPR, cell_barcode_1, cell_barcode_2, ..., cell_barcode_n. The following lines describe UMI counts for each feature barcode, with the following format: feature_name, umi_count_1, umi_count_2, ..., umi_count_n.

sample_id.stat.csv.gz stores the gzipped sufficient statistics. It has the following format. The first line describes the column names: Barcode, UMI, Feature, Count. The following lines describe the read counts for every barcode-umi-feature combination.

If the feature barcode file has a third column, there will be two files for each feature type in the third column. For example, if hashing presents, sample_id.hashing.csv and sample_id.hashing.stat.csv.gz will be generated.

sample_id.report.txt is a summary report in TXT format. The first lines describe the total number of reads parsed, the number of reads with valid cell barcodes (and percentage over all parsed reads), the number of reads with valid feature barcodes (and percentage over all parsed reads) and the number of reads with both valid cell and feature barcodes (and percentage over all parsed reads). It is then followed by sections describing each feature type. In each section, 7 lines are shown: section title, number of valid cell barcodes (with matching cell barcode and feature barcode) in this section, number of reads for these cell barcodes, mean number of reads per cell barcode, number of UMIs for these cell barcodes, mean number of UMIs per cell barcode and sequencing saturation.

If data type is crispr, three additional files, sample_id.umi_count.pdf, sample_id.filt.csv and sample id.filt.stat.csv.qz, are generated.

sample_id.umi_count.pdf plots number of UMIs against UMI with certain number of reads and colors UMIs with high likelihood of being chimeric in blue and other UMIs in red. This plot is generated purely based on number of reads each UMI has. For better visualization, we do not show UMIs with > 50 read counts (rare in data).

sample_id.filt.csv is the filtered feature count matrix. It has the same format as sample_id.csv.

sample_id.filt.stat.csv.gz is the filtered sufficient statistics. It has the same format as sample_id.stat.csv.gz.

Single-cell ATAC-seq

To process scATAC-seq data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scATAC-seq references are summarized below.

Keyword	Description
GRCh38-2020-	Human GRCh38, cellranger-arc/atac reference 2.0.0
A_arc_v2.0.0	
mm10-2020-	Mouse mm10, cellranger-arc/atac reference 2.0.0
A_arc_v2.0.0	
GRCh38_and_m	mH0 man GRCh38 and mouse mm10, cellranger-atac reference 2.0.0
2020-	
A_atac_v2.0.0	
	.2.10 man GRCh38, cellranger-atac reference 1.2.0
mm10_atac_v1.2.	OMouse mm10, cellranger-atac reference 1.2.0
hg19_atac_v1.2.0	Human hg19, cellranger-atac reference 1.2.0
b37_atac_v1.2.0	Human b37 build, cellranger-atac reference 1.2.0
	mH0ratacGRC2.88 and mouse mm10, cellranger-atac reference 1.2.0
hg19_and_mm10	Afacnav1 12g09 and mouse mm10, cellranger-atac reference 1.2.0
GRCh38_atac_v1	.H0 man GRCh38, cellranger-atac reference 1.1.0
mm10_atac_v1.1.	Mouse mm10, cellranger-atac reference 1.1.0
hg19_atac_v1.1.0	Human hg19, cellranger-atac reference 1.1.0
b37_atac_v1.1.0	,
GRCh38_and_m	mH0ratacGRICh98 and mouse mm10, cellranger-atac reference 1.1.0
hg19_and_mm10	alacnavi Hg09 and mouse mm10, cellranger-atac reference 1.1.0

2. Index column.

Put 10x single cell ATAC sample index set names (e.g. SI-NA-B1) here.

3. Chemistry column.

By default is **auto**, which will not specify a given chemistry. To analyze just the individual ATAC library from a 10x multiome assay using cellranger-atac count, use ARC-v1 in the Chemistry column.

4. DataType column.

Set it to atac.

5. FetureBarcodeFile column.

Leave it blank for scATAC-seq.

6. Example:

Workflow input

cellranger_workflow takes Illumina outputs as input and runs cellranger-atac mkfastq and cellranger-atac count. Please see the description of inputs below. Note that required inputs are shown in bold.

Name Description	Example	Default
input_Sswn_file Sheet (contains Sample, Ref-	"gs://fc-e0000000-0000-0000-0000-	
erence, Flowcell, Lane, Index as re-	000000000000/sample_sheet.csv"	
quired and Chemistry, DataType, Fea-		
tureBarcodeFile as optional)		
output Odirectory	"gs://fc-e0000000-0000-0000-0000-	
	0000000000000/cellranger_atac_output"	
run_mlfastq you want to run	true	true
cellranger-atac mkfastq		
run_collint you want to run	true	true
cellranger-atac count		
delete_ InputettineCtbry lirectories after demux.	false	false
If false, you should delete this folder		
yourself so as to not incur storage		
charges		
mkfasto <u>Nuhantwo</u> deofininainsantahelses allowed in	0	
matching barcode indices (bcl2fastq2		
default is 1)		
mkfastof force usiplied indexpaired indices are	false	false
specified, but the flowcell was run with		
only one sample index, allow the de-		
multiplex to proceed using the i7 half		
of the sample index pair		
mkfast@rflltedesingliendesamples identified	false	false
by an i7-only sample index, ignoring		
dual-indexed samples. Dual-indexed		
samples will not be demultiplexed		
mkfast Qvese ideas the read klengths as specified	"Y28n*,I8n*,N10,Y90n*"	
in RunInfo.xml		
mkfast Deletete undetterministed FASTQ files	true	false
generated by bcl2fastq2		
force deblace pipeline to use this number of	6000	
cells, bypassing the cell detection al-		
gorithm		
atac_dichorestache algorithm for dimension-	"lsa"	"lsa"
ality reduction prior to clustering and		
tsne: "lsa", "plsa", or "pca"		
peaks A 3-column BED file of peaks to over-	"gs://fc-e0000000-0000-0000-0000-	
ride cellranger atac peak caller. Peaks	000000000000/common_peaks.bed"	
must be sorted by position and not		
contain overlapping peaks; comment		
lines beginning with # are allowed		
cellrangellratagervataionersion. Available op-	"2.1.0"	"2.1.0"
tions: 2.1.0, 2.0.0, 1.2.0, 1.1.0		
docker Dockstry registry to use for cell-	"quay.io/cumulus"	"quay.io/cumulus"
ranger_workflow. Options:	_	
• "quay.io/cumulus" for images		
on Red Hat registry;		
• "cumulusprod" for backup im-		
ages on Docker Hub.		
mkfast palded registry to use for	"gcr.io/broad-cumulus"	"gcr.io/broad-cumulus"
cellranger-atac mkfastq.		
Default is the registry to which		
only Broad users have access. See		
bcl2fastq for making your own	Chapter 1. Release High	lights in Current Stable
registry.		
acronym_file	"s3://xxxx/index.tsv"	"gs://regev-
ľ		lab/resources/cellranger/i

Workflow output

See the table below for important scATAC-seq outputs.

Name	Туре	Description
cellranger_atac_mkfastq.ou	tp At<u>r</u>fay[f3 ts<u>i</u>nlg]@ ctory	Subworkflow output. A list of cloud urls containing
		FASTQ files, one url per flowcell.
cellranger_atac_count.outpu	ıt_Axorayı[Sdrineg] &ry	Subworkflow output. A list of cloud urls containing
		cellranger-atac count outputs, one url per sample.
cellranger_atac_count.outpu	ıt <u> Aweby [</u> Fü ha] rîlary	Subworkflow output. A list of htmls visualizing QCs for
		each sample (cellranger-atac count output).
collect_summaries_atac.me	tr īcisl<u>e</u> s ummaries	Task output. A excel spreadsheet containing QCs for
		each sample.

Aggregate scATAC-Seq Samples

To aggregate multiple scATAC-Seq samples, follow the instructions below:

- 1. Import cellranger_atac_aggr workflow. Please see Step 1 here, and the name of workflow is "cumulus/cellranger_atac_aggr".
- 2. Set the inputs of workflow. Please see the description of inputs below. Notice that required inputs are shown in bold:

Name Description	Example	Default
aggr_id\ ggregate ID.	"aggr_sample"	
input_countinglicentories comma-separated	"gs://fc-e000000-000-0000-0000-	
URLs to directories of samples to be	000000000000/data/sample1,gs://fc-	
aggregated.	e0000000-0000-0000-0000-	
aggregated.	000000000000/data/sample2"	
output@directdirectory	"gs://fc-e0000000-0000-0000-0000-	
	0000000000000/aggregate_result"	
genome he reference genome name used by	"GRCh38_atac_v1.2.0"	
Cell Ranger, can be either a key-		
word of pre-built genome, or a Google		
Bucket URL. See this table for the list		
of keywords of pre-built genomes.		
normal Szemple normalization mode. Options	"none"	"none"
are: none, depth, or signal.	none	none
second Reyform secondary analysis (dimen-	false	false
sionality reduction, clustering and vi-		14100
sualization).		
dim_reChacose the algorithm for dimension-	"lsa"	"lsa"
ality reduction prior to clustering and		100
tsne. Options are: lsa, plsa, or		
pca.		
peaks A 3-column BED file of peaks to over-	"gs://fc-e0000000-0000-0000-0000-	
ride cellranger atac peak caller. Peaks	00000000000000000000000000000000000000	
must be sorted by position and not	coccoooconteninion_peaks.ucu	
contain overlapping peaks; comment		
lines beginning with # are allowed		
cellran@edl_RangerrATGAC version to use. Op-	"2.1.0"	"2.1.0"
tions: 2.1.0, 2.0.0, 1.2.0, 1.1.0.		2.1.0
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-b"
num_chumber of cpus to request for cell-	64	64
ranger atac aggr.		
backen@loud backend for file transfer. Avail-	"gcp"	"gcp"
able options:		
• "gcp" for Google Cloud;		
• "aws" for Amazon AWS;		
 "local" for local machine. 		
memorMemory size string for cellranger atac	"57.6G"	"57.6G"
aggr.		
disk_splaissk space in GB needed for cell-	500	500
ranger atac aggr.		
preemp Nible ber of preemptible tries.	2	2
awsQuatheAthVS ARN string of the job queue	"arn:aws:batch:us-east-1:xxx:job-	6627
to be used. This only works for aws	queue/priority-gwf"	
backend.		
docker Degkstry registry to use for cell-	"quay.io/cumulus"	"quay.io/cumulus"
ranger_workflow. Options:		
• "quay.io/cumulus" for images		
on Red Hat registry;		
• "cumulusprod" for backup im-		
ages on Docker Hub.		

3. Check out the output in output_directory/aggr_id folder, where output_directory and aggr_id are the inputs you set in Step 2.

Single-cell immune profiling

To process single-cell immune profiling (scIR-seq) data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scIR-seq references are summarized below.

Keyword	Description
GRCh38_vdj_v7.	OH uman GRCh38 V(D)J sequences, cellranger reference 7.0.0, annotation
	built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
GRCm38_vdj_v7	• ONO ouse GRCm38 V(D)J sequences, cellranger reference 7.0.0, annotation
	built from Ensembl Mus_musculus.GRCm38.94.gtf
GRCh38_vdj_v5.	OH uman GRCh38 V(D)J sequences, cellranger reference 5.0.0, annotation
	built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
GRCm38_vdj_v5	• Obdouse GRCm38 V(D)J sequences, cellranger reference 5.0.0, annotation
	built from Ensembl Mus_musculus.GRCm38.94.gtf
GRCh38_vdj_v4.	OH uman GRCh38 V(D)J sequences, cellranger reference 4.0.0, annotation
	built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
GRCm38_vdj_v4	.0Mo ouse GRCm38 V(D)J sequences, cellranger reference 4.0.0, annotation
	built from Ensembl Mus_musculus.GRCm38.94.gtf
GRCh38_vdj_v3.	1.H uman GRCh38 V(D)J sequences, cellranger reference 3.1.0, annotation
	built from Ensembl Homo_sapiens.GRCh38.94.chr_patch_hapl_scaff.gtf
GRCm38_vdj_v3	.1Mo ouse GRCm38 V(D)J sequences, cellranger reference 3.1.0, annotation
	built from Ensembl Mus_musculus.GRCm38.94.gtf
GRCh38_vdj_v2.	O.H uman GRCh38 V(D)J sequences, cellranger reference 2.0.0, annotation
or GRCh38_vdj	built from Ensembl <i>Homo_sapiens.GRCh38.87.chr_patch_hapl_scaff.gtf</i> and
	vdj_GRCh38_alts_ensembl_10x_genes-2.0.0.gtf
GRCm38_vdj_v2	.230 ouse GRCm38 V(D)J sequences, cellranger reference 2.2.0, annotation
or	built from Ensembl Mus_musculus.GRCm38.90.chr_patch_hapl_scaff.gtf
GRCm38_vdj	

2. **Index** column.

Put 10x single cell V(D)J sample index set names (e.g. SI-GA-A3) here.

3. Chemistry column.

This column is not used for scIR-seq data. Put **fiveprime** here as a placeholder if you decide to include the Chemistry column.

4. DataType column.

Set it to vdj.

5. FetureBarcodeFile column.

Leave it blank for scIR-seq.

6. Example:

Workflow input

For scIR-seq data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cellranger vdj. Revalant workflow inputs are described below, with required inputs highlighted in bold.

Name Description	Example	Default
nput_Sswn_file Sheet (contains Sample, Ref-	"gs://fc-e0000000-0000-0000-0000-	
erence, Flowcell, Lane, Index as re-	000000000000/sample_sheet.csv"	
quired and Chemistry, DataType, Fea-		
tureBarcodeFile as optional)		
output@directoingctory	"gs://fc-e0000000-0000-0000-0000-	
	000000000000/cellranger_output"	
un_mlfastqu want to run cellranger	true	true
mkfastq		
un_colfntyou want to run cellranger	true	true
vdj		
lelete_IndeletecB@Iraditrecytories after demux.	false	false
If false, you should delete this folder		
yourself so as to not incur storage		
charges		
nkfast d<u>Nu</u>hanbærd eo <u>f</u> mi nninantahels es allowed in	0	
matching barcode indices (bcl2fastq2		
default is 1)		
nkfast t force uşiplide in/d5xpaired indices are	false	false
specified, but the flowcell was run with		
only one sample index, allow the de-		
multiplex to proceed using the i7 half		
of the sample index pair		
nkfast Orflytedesing liepdescamples identified	false	false
by an i7-only sample index, ignoring		
dual-indexed samples. Dual-indexed		
samples will not be demultiplexed		
nkfast Qvese<u>i</u>dbasths_rnad klengths as specified	"Y28n*,I8n*,N10,Y90n*"	
in RunInfo.xml		
nkfast pedete te <u>u</u> undettennininedd FASTQ files	true	false
generated by bcl2fastq2		
dj_denDovonot align reads to reference V(D)J	false	false
sequences before de novo assembly		
dj_chariorce the analysis to be carried out for	"auto"	"auto"
a particular chain type. The accepted		
values are:		
• "auto" for auto detection based		
on TR vs IG representation;		
• "TR" for T cell receptors;		
• "IG" for B cell receptors.		
cellrangellrangeionversion, could be 7.0.1,	"7.0.1"	"7.0.1"
7.0.0, 6.1.2, 6.1.1, 6.0.2, 6.0.1, 6.0.0,		
5.0.1, 5.0.0		
ocker Dogkstry registry to use for cell-	"quay.io/cumulus"	"quay.io/cumulus"
ranger_workflow. Options:		
• "quay.io/cumulus" for images		
on Red Hat registry;		
• "cumulusprod" for backup im-		
ages on Docker Hub.		
kfast patakk er registry to use for	"gcr.io/broad-cumulus"	"gcr.io/broad-cumulus"
cellranger mkfastq. Default is		
the registry to which only Broad users		
have access. See bcl2fastq for making 2.3,0 October 30, 2022		-
. 2.3,000ctoper 30,2022		4
ronym_file	"s3://xxxx/index.tsv"	"gs://regev-
The link/path of an index file in TCV		lab/resources/cellranger/i
The link/path of an index file in TSV		

Workflow output

See the table below for important scIR-seq outputs.

Name	Туре	Description
cellranger_mkfastq.output_	fa stqs<u>a</u>y[Becitog] /?	Subworkflow output. A list of cloud urls containing
		FASTQ files, one url per flowcell.
cellranger_vdj.output_vdj_d	liractoyyString]?	Subworkflow output. A list of cloud urls containing vdj
		results, one url per sample.
cellranger_vdj.output_web_	suAmmanya[Tyile]?	Subworkflow output. A list of htmls visualizing QCs for
		each sample (cellranger vdj output).
collect_summaries_vdj.met	ri &i<u>l</u>sû mmaries	Task output. A excel spreadsheet containing QCs for
		each sample.

Single-cell multiomics

To utilize cellranger arc/cellranger multi/cellranger count for single-cell multiomics, follow the specific instructions below. In particular, we put each single modality in one separate lin in the sample sheet as described above. We then use the *Link* column to link multiple modalities together. Depending on the modalities included, *cellranger arc* (Multiome ATAC + Gene Expression), *cellranger multi* (CellPlex), or *cellranger count* (Feature Barcode) will be triggered. Note that cumulus_feature_barcoding/demuxEM would not be triggered for hashing/citeseq in this setting.

Sample sheet

1. Reference column.

Pre-built Multiome ATAC + Gene Expression references are summarized below. CellPlex and Feature Barcode use the same reference as in Single-cell and single-nucleus RNA-seq.

Keyword	Description	
GRCh38-2020-	Human GRCh38 sequences (GENCODE v32/Ensembl 98), cellranger arc ref-	
A_arc_v2.0.0	erence 2.0.0	
mm10-2020-	Mouse GRCm38 sequences (GENCODE vM23/Ensembl 98), cellranger arc	
A_arc_v2.0.0	reference 2.0.0	
GRCh38-2020-	Human GRCh38 sequences (GENCODE v32/Ensembl 98), cellranger arc ref-	
A_arc_v1.0.0	erence 1.0.0	
mm10-2020-	Mouse GRCm38 sequences (GENCODE vM23/Ensembl 98), cellranger arc	
A_arc_v1.0.0	reference 1.0.0	

2. DataType column.

For each modality, set it to the corresponding data type.

3. FetureBarcodeFile column.

For RNA-seq modality, only set this if a target panel is provided. For CMO (CellPlex), provide sample name - CMO tag association as follows:

```
sample1,CMO301|CMO302
sample2,CMO303
```

For CITESeq, Perturb-seq and hashing, provide one CSV file as defined in Feature Barcode Reference. Note that one feature barcode reference should be provided for all feature-barcode related modalities (e.g. *citeseq*, *hashing*, *crispr*) and all these modalities should put the same reference file in *FeatureBarcodeFile* column.

4. Link column.

Put a sample unique link name for all modalities that are linked.

5. Example:

In the above example, three linked samples are provided. *cellranger arc*, *cellranger multi* and *cellranger count* will be triggered respectively.

Workflow input

For single-cell multiomics data, cellranger_workflow takes Illumina outputs as input and runs cellranger-arc mkfastq/cellranger mkfastq and cellranger-arc ount/cellranger multi/cellranger count. Revalant workflow inputs are described below, with required inputs highlighted in bold.

Name Description	Example	Default
input_Sswn_file Sheet (contains Sample, Ref-	"gs://fc-e0000000-0000-0000-0000-	
erence, Flowcell, Lane, Index as re-	000000000000/sample_sheet.csv"	
quired and Chemistry, DataType, Fea-		
tureBarcodeFile, Link as optional)		
output@directoryectory	"gs://fc-e0000000-0000-0000-0000-	
	000000000000/cellranger_output"	
run_mkfastq you want to run	true	true
cellranger-arc mkfastq/		
cellranger mkfastq		
run_co li nt you want to run	true	true
cellranger-arc count/		
cellranger multi/		
cellranger count		
delete_InputeIceB_dIrachmonstories after demux.	false	false
If false, you should delete this folder		
yourself so as to not incur storage		
charges		

Table 1 – continued from previous page

Name Description	Example	Default
mkfast \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	Delauit
matching barcode indices (bcl2fastq2	, v	
default is 1)		
mkfast uf force usinkited i7/di5 xpaired indices are	false	false
specified, but the flowcell was run with	laise	laise
only one sample index, allow the de-		
multiplex to proceed using the i7 half		
of the sample index pair		
	f-1	£-1
mkfast Q rfl t ted <u>e</u> singlierdesamples identified by an i7-only sample index, ignoring	false	false
dual-indexed samples. Dual-indexed		
samples will not be demultiplexed	(\$\frac{1}{2}\text{0}\psi \bar{1}\text{0}\psi \bar{1}0	
mkfast Qvestrideasths_read klengths as specified	"Y28n*,I8n*,N10,Y90n*"	
in RunInfo.xml		C 1
mkfast Dedetete undetermined FASTQ files	true	false
generated by bcl2fastq2		
force_deblace pipeline to use this number of	6000	
cells, bypassing the cell detection al-		
gorithm, mutually exclusive with ex-		
pect_cells. This option is used by <i>cell</i> -		
ranger multi and cellranger count.		
expect Explescted number of recovered cells.	3000	
Mutually exclusive with force_cells.		
This option is used by <i>cellranger multi</i>		
and cellranger count.		
include <u>Timetrelmiss</u> option on to also count reads	true	true
mapping to intronic regions. With this		
option, users do not need to use pre-		
mRNA references. Note that if this op-		
tion is set, cellranger_version must be		
>= 5.0.0. This option is used by <i>cell</i> -		
ranger multi and cellranger count.		
arc_gex_exclude_introns	false	false
Disable counting of intronic reads. In		
this mode, only reads that are exonic		
and compatible with annotated splice		
junctions in the reference are counted.		
Note: using this mode will reduce the		
UMI counts in the feature-barcode		
matrix.		
no_banfurn this option on to disable BAM	false	false
file generation. This option is		
only available if cellranger_version		
>= 5.0.0. This option is used by		
cellranger-arc count, cellranger multi		
and cellranger count.		
	I	Centinued on payt nego

Table 1 – continued from previous page

Name Description arc_min_atac_count Cell caller override to define the minimum number of ATAC transposition events in peaks (ATAC counts) for a cell barcode. Note: this input must be specified in conjunction with arc_min_gex_count input. With both inputs set, a barcode is defined as a cell if it contains at least arc_min_atac_count ATAC counts AND at least	
Cell caller override to define the minimum number of ATAC transposition events in peaks (ATAC counts) for a cell barcode. Note: this input must be specified in conjunction with arc_min_gex_count input. With both inputs set, a barcode is defined as a cell if it contains at least arc_min_atac_count ATAC	
arc_min_gex_count GEX UMI counts.	
arc_min_gex_count 200	
Cell caller override to define the minimum number of GEX UMI counts for a cell barcode. Note: this input must be specified in conjunction with arc_min_atac_count. See the description of arc_min_atac_count input for details.	
peaks A 3-column BED file of peaks to over- ride cellranger arc peak caller. Peaks must be sorted by position and not contain overlapping peaks; comment lines beginning with # are allowed "gs://fc-e0000000-0000-0000-0000- 0000000000000	
second Reg form Cell Ranger secondary analysis (dimensionality reduction, clustering, etc.). This option is used by cell-ranger multi and cellranger count.	
cmo_sttMO set CSV file, delaring CMO constructs and associated barcodes. See CMO reference for details. Used only for cellranger multi. "gs://fc-e0000000-0000-0000-0000-0000-0000-000	
cellrangellrangeionversion, could be 7.0.1, "7.0.1" "7.0.1" "7.0.1" "7.0.1" "7.0.1"	
cellrangerensionersion, could be 2.0.2, "2.0.2" "2.0.2" "2.0.2"	

Table 1 – continued from previous page

	continued from previous page	
Name Description	Example	Default
docker Degkstry registry to use for cell-ranger_workflow. Options: • "quay.io/cumulus" for images on Red Hat registry; • "cumulusprod" for backup images on Docker Hub.	"quay.io/cumulus"	"quay.io/cumulus"
mkfast Doldder_registry to use for cellranger-arc mkfastq/cellranger mkfastq. Default is the registry to which only Broad users have access. See bcl2fastq for making your own registry.	"gcr.io/broad-cumulus"	"gcr.io/broad-cumulus"
acronym_file The link/path of an index file in TSV format for fetching preset genome references, chemistry whitelists, etc. by their names. Set an GS URI if <i>backend</i> is gcp; an S3 URI for aws backend; an absolute file path for local backend.	"s3://xxxx/index.tsv"	"gs://regev- lab/resources/cellranger/index.tsv
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a us- central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c"
num_cNumber of cpus to request for one node for cellranger mkfastq and cell- ranger vdj	32	32
memorMemory size string for cellranger/cellranger-arc mkfastq and cellranger vdj	"120G"	"120G"
mkfast Optiska space in GB for mkfastq	1500	1500
count disk space in GB needed for cell- ranger count	500	500
arc_nuNunpber of cpus to request for one node for cellranger-arc count	64	64
arc_meMomyory size string for cellranger-arc count	"160G"	"160G"
arc_disDistpacepace in GB needed for cellranger-arc count	700	700
backen@loud backend for file transfer. Available options: • "gcp" for Google Cloud; • "aws" for Amazon AWS; • "local" for local machine.	"gcp"	"gcp"
preemp Nible ber of preemptible tries	2	2
<u> </u>	1	Continued on payt page

Table 1 – continued from previous page

Name Description	Example	Default
awsQualineAAthVS ARN string of the job queue	"arn:aws:batch:us-east-1:xxx:job-	6699
to be used. This only works for aws	queue/priority-gwf"	
backend.		

Workflow output

See the table below for important sc/snRNA-seq outputs.

Name	Туре	Description
cellranger_arc_mkfastq.out	ou A_rfast[sst_rilig]&tory	Subworkflow output. A list of cloud urls containing
/ cell-		FASTQ files, one url per flowcell.
ranger_mkfastq.output_fast	qs_directory	
cellranger_arc_count.output	_ &oway_Streeg d?y	Subworkflow output. A list of cloud urls contain-
/ cell-		ing cellranger-arc count, cellranger multi or cellranger
ranger_multi.output_multi_	directory	count outputs, one url per sample.
/ cell-		
ranger_count_fbc.output_co	ount_directory	
cellranger_arc_count.output	_xxeb_y{Urinen}ary	A list of htmls visualizing QCs for each sample
/ cell-		(cellranger-arc count / cellranger count output).
ranger_count_fbc.output_w	eb_summary	
collect_summaries_arc.met	ri &si<u>l</u>eû mmaries	A excel spreadsheet containing QCs for each sample.
/ col-		
lect_summaries_fbc.metrics	_summaries	

Fixed RNA Profiling

Cellranger multi supports Fixed RNA Profiling since version 7.0.0.

Sample Sheet

1. Reference column.

Prebuilt scRNA-seq references for FRP data processing are summarized below.

Keyword	Description
GRCh38-2020-	Human GRCh38 (GENCODE v32/Ensembl 98)
A	

2. DataType column.

Set frp for RNA-Seq modalities of your FRP samples. For other modalities (e.g. citeseq or antibody), set to their corresponding data types.

3. ProbeSet column.

Preset probe set references for FRP samples:

Keyword	Description
FRP_human_probert probe set for human	

If *ProbeSet* column is not set, use **FRP_human_probe_v1** by default.

4. FeatureBarcodeFile column.

Provide sample name - Probe Barcode association as follows:

```
sample1,BC001|BC002,Control
sample2,BC003|BC004,Treated
```

where the third column (i.e. Control and Treated above) is optional, which specifies the description of the samples.

5. Link column.

Put a sample unique link name for all modalities that are linked.

If *Link* column is not set, only consider RNA-seq modalities (i.e. samples of *DataType* frp) and use their *Sample* names as the *Link* names.

6. Example:

```
Sample, Reference, ProbeSet, Flowcell, DataType, FeatureBarcodeFile, Link sample1, GRCh38-2020-A, FRP_human_probe_v1, /path/to/sample1/fastq/folder, frp, /path/ oto/sample1/fbf/file, sample2_rna, GRCh38-2020-A, FRP_human_probe_v1, /path/to/sample2/rna/fastq/folder, ofrp, /path/to/sample2/rna/fbf/file, sample2 sample2_citeseq, GRCh38-2020-A, /path/to/sample2/citeseq/fastq/folder, citeseq, /opath/to/sample2/citeseq/fbf/file, sample2
```

In the example above, two linked samples are provided.

Workflow Input

For FRP data, cellranger_workflow takes Illumina outputs as input and runs cellranger mkfastq and cellranger multi. Revalant workflow inputs are described below, with required inputs highlighted in **bold**:

Name Description	Example	Default
input_Sswnfile Sheet (contains Sample, Ref-	"gs://fc-e0000000-0000-0000-0000-	
erence, DataType, Flowcell as re-	000000000000/sample_sheet.csv"	
quired; Lane and Index are required		
if run_mkfastq is true; ProbeSet,		
FeatureBarcodeFile and Link are op-		
tional)		
output@directory	"gs://fc-e0000000-0000-0000-0000- 000000000000/cellranger_output"	
run_mlfastqu want to run cellranger	true	true
mkfastq	litue	liue
run_colfntyou want to run cellranger	true	true
multi	truc	liuc
delete_InduletecB@Iredimentories after demux.	false	false
If false, you should delete this folder	Tailse	Taise
yourself so as to not incur storage		
charges		
mkfasta <u>Nuharbærdæf</u> mi ssisatahels es allowed in	0	1
matching barcode indices (bcl2fastq2		
default is 1)		
mkfastoff force uşiplided indexpaired indices are	false	false
specified, but the flowcell was run with		
only one sample index, allow the de-		
multiplex to proceed using the i7 half		
of the sample index pair		
mkfast@rflytedesingliepliendesamples identified	false	false
by an i7-only sample index, ignoring		
dual-indexed samples. Dual-indexed		
samples will not be demultiplexed		
mkfast Qveserideasths_read klengths as specified	""Y28n*,I8n*,N10,Y90n*""	
in RunInfo.xml		
mkfast pedetete unndettenninged FASTQ files	false	false
generated by bcl2fastq2	6000	
force deduce pipeline to use this number of	6000	
cells, bypassing the cell detection al-		
gorithm, mutually exclusive with expect_cells. This option is used by		
cellranger multi.		
expect Explacted number of recovered cells.	3000	
Mutually exclusive with force_cells.	3000	
This option is used by cellranger		
multi.		
include Timtredniss option on to also count reads	true	true
mapping to intronic regions. With this		
option, users do not need to use pre-		
mRNA references. Note that if this		
option is set, cellranger_version must		
be $>= 5.0.0$. This option is used by		
cellranger multi.		
no_banTurn this option on to disable BAM	false	false
file generation. This option is		
only available if cellranger_version		
>= 5.0.0. This option is used by		
cellranger multi.		
secondPerform Cell Ranger secondary anal-	false	false
1.1. 2.3,0 October 30 2022 reduction, clus-		55
tering, etc.). This option is used by		
cellranger multi.		
cellrangerl version to use. Available	"7.0.1"	"7.0.1"

Workflow Output

See the table below for important outputs:

Name	Туре	Description
fastq_outputs	Array[Array[String]]	fastq_outputs[0] gives the list of cloud urls con-
		taining FASTQ files for RNA-Seq modalities of FRP
		data, one url per flowcell.
count_outputs	Map[String, Ar-	count_outputs["multi"] gives the list of cloud
	ray[String]]	urls containing cellranger multi outputs, one url per
		sample.

Build Cell Ranger References

We provide routines wrapping Cell Ranger tools to build references for sc/snRNA-seq, scATAC-seq and single-cell immune profiling data.

Build references for sc/snRNA-seq

We provide a wrapper of cellranger mkref to build sc/snRNA-seq references. Please follow the instructions below.

1. Import cellranger_create_reference

Import cellranger_create_reference workflow to your workspace by following instructions in Import workflows to Terra. You should choose github.com/kalarman-cell-observatory/cumulus/Cellranger_create_reference to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_create_reference* workflow in the drop-down menu.

2. Upload requred data to Google Bucket

Required data may include input sample sheet, genome FASTA files and gene annotation GTF files.

3. Input sample sheet

If multiple species are specified, a sample sheet in CSV format is required. We describe the sample sheet format below, with required columns highlighted in bold:

Column	Description
Genome	Genome name
Fasta	Location to the genome assembly in FASTA/FASTA.gz format
Genes	Location to the gene annotation file in GTF/GTF.gz format
Attributes	Optional, A list of key:value pairs separated by ;. If set, cellranger mkgtf
	will be called to filter the user-provided GTF file. See 10x filter with mkgtf for more
	details

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

See below for an example for building Example:

```
Genome, Fasta, Genes, Attributes

GRCh38, gs://fc-e0000000-0000-0000-0000-000000000000/GRCh38.fa.gz,gs://fc-

→e0000000-0000-0000-0000-00000000000/GRCh38.gtf.gz,gene_biotype:protein_

→coding;gene_biotype:lincRNA;gene_biotype:antisense

mm10,gs://fc-e0000000-0000-0000-0000-00000000000/mm10.fa.gz,gs://fc-

→e0000000-0000-0000-0000-00000000000/mm10.gtf.gz
```

If multiple species are specified, the reference will built under **Genome** names concatenated by '_and_'s. In the above example, the reference is stored under 'GRCh38_and_mm10'.

4. Workflow input

Required inputs are highlighted in bold. Note that <code>input_sample_sheet</code> and <code>input_fasta</code>, <code>input_gtf</code> , <code>genome</code> and attributes are mutually exclusive.

58

NameDescription	Example	Default	
input_Asaanpldestheett in CSV format al-	"gs://fc-e0000000-		
lows users to specify more than 1	0000-0000-0000-		
genomes to build references (e.g.	0000000000000/input_sample_shee	t.csv"	
human and mouse). If a sample			
sheet is provided, input_fasta, in-			
<pre>put_gtf, and attributes will be ig-</pre>			
nored.			
input Ifanta genome reference in either	"gs://fc-e0000000-		
FASTA or FASTA.gz format	0000-0000-0000-		
	000000000000/Homo_sapiens.GR	Ch38.dna.toplevel.fa.gz"	
input Igtfut gene annotation file in either	"gs://fc-e0000000-	1 0	
GTF or GTF.gz format	0000-0000-0000-		
2 - 2 - 2 - 2 - 3 - 2 - 2 - 2 - 2 - 2 -	000000000000/Homo_sapiens.GR	Ch38.94.chr patch hapl	scaff.gtf.gz"
genon@enome reference name. New	refdata-cellranger-vdj-GRCh38-	one ory ment_paren_map1_	.504111.841.82
reference will be stored in a folder	alts-ensembl-3.1.0		
named genome	ares ensemer s.r.o		
outpuOudinectoryctory	"gs://fc-e0000000-		
output_miracturgetory	0000-0000-0000-		
	00000000000000000000000000000000000000	,,,	
attuiling and light of language line mains			histymalonticana
attributes list of key: value pairs separated by ;. If this op-	"gene_biotype:protein_coding;gen	ototype:IIIIcKNA;gene	_orotype:antisense
tion is not None, cellranger			
mkgtf will be called to filter the			
user-provided GTF file. See 10x			
filter with mkgtf for more details			
pre_mlfnawe want to build pre-mRNA	true	false	
references, in which we use full			
length transcripts as exons in			
the annotation file. We follow			
10x build Cell Ranger compatible			
pre-mRNA Reference Package to			
build pre-mRNA references			
ref_versforence version string	Ensembl v94		
cellrangethrangerionversion, could be:	"7.0.1"	"7.0.1"	
7.0.1, 7.0.0, 6.1.2, 6.1.1			
dockeiDockistryegistry to use for cell-	"quay.io/cumulus"	"quay.io/cumulus"	
ranger_workflow. Options:			
• "quay.io/cumulus" for im-			
ages on Red Hat registry;			
• "cumulusprod" for backup			
images on Docker Hub.			
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a	
Zones Google Gloud Zones	as contain a as westi a	us-central1-b	
		us-central1-c us-	
		central1-f us-east1-b	
		us-east1-c us-east1-d	
		us-west1-a us-west1-	
Manual and Community of C	1	b us-west1-c"	
num Number of cpus to request for one	1	1	
node for building indices	"22G"	"22C"	
memoMemory size string for cellranger	"32G"	"32G"	
mkref	100	100	
disk_spational disk space in GB	Chanter 1 Pologge H	100	table:
backendoud backend for file transfer.	"gcp" Chapter 1. Release H	iging its in current s	lable
Available options:			
 "gcp" for Google Cloud; 			
 "aws" for Amazon AWS; 		1	

5. Workflow output

Name	Туре	Description
output_refere	nÆile	Gzipped reference folder with name <i>genome.tar.gz</i> . We will also store
		a copy of the gzipped tarball under output_directory specified in the
		input.

Build references for scATAC-seq

We provide a wrapper of cellranger-atac mkref to build scATAC-seq references. Please follow the instructions below.

1. Import cellranger_atac_create_reference

Import *cellranger_atac_create_reference* workflow to your workspace by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/cumulus/Cellranger atac create reference** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_atac_create_reference* workflow in the drop-down menu.

2. Upload required data to Google Bucket

Required data include config JSON file, genome FASTA file, gene annotation file (GTF or GFF3 format) and motif input file (JASPAR format).

3. Workflow input

Required inputs are highlighted in bold.

NameDescription	Example	Default
genon@enome reference name. New reference will be stored in a folder named genome	refdata-cellranger-atac-mm10- 1.1.0	
input_fastaRL for input fasta file	"gs://fc-e0000000- 0000-0000-0000- 000000000000	
input_@ffURL for input GTF file	"gs://fc-e0000000- 0000-0000-0000- 000000000000	
organi Na me of the organism	"human"	
non_nAckenn_manteparated list of names of contigs that are not in nucleus	"chrM"	"chrM"
input_Opptiiosal file containing transcription factor motifs in JASPAR format	"gs://fc-e0000000-0000-0000- 0000-000000000000/motifs.pfm"	
outpuQuirectory	"gs://fc-e0000000- 0000-0000-0000- 000000000000	
cellrangehranger-varasionersion, could be: 2.1.0, 2.0.0, 1.2.0, 1.1.0	"2.1.0"	"2.1.0"
docken over docken	"quay.io/cumulus"	"quay.io/cumulus"
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a us-central1-b us-central1-c us-central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-c"
memo M emory size string for cellranger- atac mkref	"32G"	"32G"
disk_spateonal disk space in GB	100	100
backerdoud backend for file transfer. Available options: • "gcp" for Google Cloud; • "aws" for Amazon AWS; • "local" for local machine.	"gcp"	"gcp"
preem Nimbber of preemptible tries	2	2
aws Quelone ANWS ARN string of the job queue to be used. This only works for aws backend.	"arn:aws:batch:us-east-1:xxx:job-queue/priority-gwf"	(6)

4. Workflow output

Name	Туре	Description
output_refere	nÆile	Gzipped reference folder with name <i>genome.tar.gz</i> . We will also store
		a copy of the gzipped tarball under output_directory specified in the
		input.

Build references for single-cell immune profiling data

We provide a wrapper of cellranger mkvdjref to build single-cell immune profiling references. Please follow the instructions below.

1. Import cellranger_vdj_create_reference

Import *cellranger_vdj_create_reference* workflow to your workspace by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/cumulus/Cellranger vdj create reference** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellranger_vdj_create_reference* workflow in the drop-down menu.

2. Upload requred data to Google Bucket

Required data include genome FASTA file and gene annotation file (GTF format).

3. Workflow input

Required inputs are highlighted in bold.

NameDescription	Example	Default
input Ifanta genome reference in either	"gs://fc-e0000000-	
FASTA or FASTA.gz format	0000-0000-0000-	
Tris iri or Tris iri.gz format	000000000000/Homo_sapiens.GR	Ch38 dna toplevel fa oz"
input_Igtfut gene annotation file in either	"gs://fc-e0000000-	chiso.dha.topievenia.gz
GTF or GTF.gz format	0000-0000-0000-	
G11 of G11.gz format	0000000000000/Homo_sapiens.GR	Ch28 04 chr. notch, hand scoff.
gonantian ama mafamanaa nama Navi		cn38.94.cm_patcn_napr_scan.
genonGenome reference name. New	refdata-cellranger-vdj-GRCh38-	
reference will be stored in a folder	alts-ensembl-3.1.0	
named genome	// //C 0000000	
outpuQutipuctbryctory	"gs://fc-e0000000-	
	0000-0000-0000-	
	0000000000000/cellranger_vdj_refe	rence"
ref_ve rsfor ence version string	Ensembl v94	
cellrangethrangerionversion, could be:	"7.0.1"	"7.0.1"
7.0.1, 7.0.0, 6.1.2, 6.1.1		
dockei Dockistryegistry to use for cell-	"quay.io/cumulus"	"quay.io/cumulus"
ranger_workflow. Options:		
• "quay.io/cumulus" for im-		
ages on Red Hat registry;		
"cumulusprod" for backup		
images on Docker Hub.		
images on 2 cener riue.		
zones Google cloud zones	"us-central1-a us-west1-a"	"us-central1-a
zones coogre croud zones	as contain a as west a	us-central1-b
		us-central1-c us-
		central1-f us-east1-b
		us-east1-c us-east1-d
		us-west1-a us-west1-
		b us-west1-c"
mamaMamany siza string for called	"32G"	"32G"
memory size string for cellranger	320	320
mkvdjref	100	100
disk spate in GB	100	100
backend for file transfer.	"gcp"	"gcp"
Available options:		
• "gcp" for Google Cloud;		
 "aws" for Amazon AWS; 		
 "local" for local machine. 		
preemptible tries	2	2
awsQuilence ANN SARN string of the job	"arn:aws:batch:us-east-1:xxx:job-	(427
queue to be used. This only works	queue/priority-gwf"	
for aws backend.		

4. Workflow output

Name	Туре	Description
output_refere	nŒile	Gzipped reference folder with name <i>genome.tar.gz</i> . We will also store
		a copy of the gzipped tarball under output_directory specified in the
		input.

1.1.6 Run STARsolo to generate gene-count matrices from FASTQ files

This starsolo workflow workflow generates gene-count matrices from FASTQ data using STARsolo.

Prepare input data and import workflow

1. Run cellranger_workflow to generate FASTQ data

You can skip this step if your data are already in FASTQ format.

Otherwise, for 10X data, you need to first run *cellranger_workflow* to generate FASTQ files from BCL raw data for each sample. Please follow cellranger_workflow manual.

Notice that you should set **run_mkfastq** to true to get FASTQ output. You can also set **run_count** to false to skip Cell Ranger count step.

For Non-Broad users, you'll need to build your own docker for bcl2fastq step. Instructions are here.

2. Import starsolo_workflow

Import *starsolo_workflow* workflow to your workspace by following instructions in Import workflows to Terra. You should choose workflow **github.com/lilab-bcb/cumulus/STARsolo** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *starsolo workflow* in the drop-down menu.

3. Prepare a sample sheet

3.1 Sample sheet format:

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to identify flowcells and generate sample/channel-specific count matrices.

A brief description of the sample sheet format is listed below (required column headers are shown in bold).

Column	Description		
Sample	Contains the sample name. Each sample should have a unique sample name.		
Reference			
	Provides the reference genome used by STARSolo for each sample.		
	The elements in this column can be either Cloud bucket URIs to reference tarballs or keywords		
	such as <i>GRCh38-2020-A</i> .		
	A full list of available keywords is included in genome reference section below.		
Location	Indicates the Cloud bucket URI of the folder holding FASTQ files of each sample.		
Assay	Indicates the assay type of each sample. Available options:		
	• tenX_v3 for 10x 3' v3		
	• tenX_multiome for 10x multiome		
	• tenX_v2 for 10x 3' v2		
	• tenX_5p for 10x 5' (only use R2 for alignment; equivalent to 10x chemistry SC5P-R2)		
	• tenX_5p_pe for 10x 5' (use both R1 and R2 for alignment, and R1 has length longer than		
	39 nt; equivalent to 10x chemistry SC5P-PE)		
	• DropSeq		
	• SeqWell		
	• SlideSeq		
	• ShareSeq		
	• None		
	If not specified, use the default tenX_v3.		

3.2 Assay-specific preset STARsolo options

If tenX_v3, The following STARsolo options would be applied (could be overwritten by user-specified options):

```
--soloType CB_UMI_Simple --soloCBstart 1 --soloCBlen 16 --soloUMIstart 17 --
→soloUMIlen 12 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering,
→MultiGeneUMI_CR --soloUMIdedup 1MM_CR --clipAdapterType CellRanger4 --
→outFilterScoreMin 30 --outSAMtype BAM SortedByCoordinate --outSAMattributes CR UR.
→CY UY CB UB
```

If tenX_multiome, use the same STARsolo options as for tenX_v3 assay, but with the 10X ARC Multiome Gene Expression whitelist.

If tenX_v2, the following STARsolo options would be applied (could be overwritten by user-specified options):

```
--soloType CB_UMI_Simple --soloCBstart 1 --soloCBlen 16 --soloUMIstart 17 --
→soloUMIlen 10 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering_
→MultiGeneUMI_CR --soloUMIdedup 1MM_CR --clipAdapterType CellRanger4 --
→outFilterScoreMin 30 --outSAMtype BAM SortedByCoordinate --outSAMattributes CR UR,
→CY UY CB UB
```

If tenX_5p, the following STARsolo options would be applied (could be overwritten by user-specified options):

```
--soloType CB_UMI_Simple --soloCBstart 1 --soloCBlen 16 --soloUMIstart 17 --
→soloUMIlen 10 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering_
→MultiGeneUMI_CR --soloStrand Reverse --soloUMIdedup 1MM_CR --outFilterScoreMin 30 --
→outSAMtype BAM SortedByCoordinate --outSAMattributes CR UR CY UY CB UB
```

If tenX_5p_pe, the following STARsolo options would be applied (could be overwritten by user-specified options):

```
--soloType CB_UMI_Simple --soloCBstart 1 --soloCBlen 16 --soloUMIstart 17
→soloUMIlen 10 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering
→MultiGeneUMI_CR --soloBarcodeMate 1 --clip5pNbases 39 0 --soloUMIdedup (continueRon_next page)
→outFilterScoreMin 30 --outSAMtype BAM SortedByCoordinate --outSAMattributes CR UR_
 CY UY CB UB
```

(continued from previous page)

If ShareSeq, the following STARsolo options would be applied (could be overwritten by user-specific options):

```
--soloType CB_UMI_Simple --soloCBstart 1 --soloCBlen 24 --soloUMIstart 25 --

soloUMIlen 10 --soloCBmatchWLtype 1MM_multi_Nbase_pseudocounts --soloUMIfiltering_

MultiGeneUMI_CR --soloUMIdedup 1MM_CR --clipAdapterType CellRanger4 --

outFilterScoreMin 30 --outSAMtype BAM SortedByCoordinate --outSAMattributes CR UR_

CY UY CB UB
```

If **SeqWell** or **DropSeq**, the following STARsolo options would be applied (could be overwritten by user-specified options):

```
--soloType CB_UMI_Simple --soloCBstart 1 --soloCBlen 12 --soloUMIstart 13 --

→soloUMIlen 8 --outSAMtype BAM SortedByCoordinate --outSAMattributes CR UR CY UY CB_

→UB
```

If **None**, no preset option would be applied.

The sample sheet supports sequencing the same sample across multiple flowcells. In case of multiple flowcells, you should specify one line for each flowcell using the same sample name. In the following example, we have 2 samples and sample_1 is sequenced in two flowcells.

Example:

3.2 Upload your sample sheet to the workspace bucket:

Example:

1. Launch analysis

In your workspace, open starsolo_workflow in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Process single workflow from files as below

- Run workflow with inputs defined by file paths
- Run workflow(s) with inputs defined by data table

and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click ${\tt RUN}$ ${\tt ANALYSIS}$ and then click ${\tt LAUNCH}.$

Workflow inputs

Below are inputs for *count* workflow. Notice that required inputs are in bold.

Name	Description	Example	Default	
input_csv_	fileInput CSV sample sheet describing metadata of each	"gs://fc-e0000000-		
	sample.	0000-0000-0000-		
		000000000000/sample_she	et.tsv"	
output_dir	ectory bucket URI of output directory.	"gs://fc-e0000000-		
		0000-0000-0000-		
		0000000000000/count_resul		
read1_fastq	· T	"_S*_L*_R1_001.fastq.gz"	"_S*_L*_R1_001.fa	ıstq.gz'
	Filename suffix pattern in wildcards for Read 1. This is			
	used for looking for Read 1 fastq files.			
	If fastq files are generated by CellRanger count, use			
	_S*_L*_R1_001.fastq.gz, which means Read 1			
	files must have names such as			
	" <sample>_S1_L1_R1_001.fastq.gz", where</sample>			
	<sample> is specified in input_csv_file.</sample>			
	If fastq files are Sequence Read Archive (SRA) data,			
	use something like _1.fastq.gz, where _1 refers to			
	the first reads, so that Read 1 files must have names			
	such as " <sample>_1.fastq.gz" where <sample> is</sample></sample>			
	specified in input_csv_file .			
	If fastq files are not zipped, substitute .fastq for			
	.fastq.gz in the corresponding pattern above.			
read2_fastq	· †	"_S*_L*_R2_001.fastq.gz"	"_S*_L*_R2_001.fa	istq.gz'
	Filename suffix pattern in wildcards for Read 2. This is			
	used for looking for Read 2 fastq files.			
	If fastq files are generated by CellRanger count, use			
	_S*_L*_R2_001.fastq.gz, which means Read 2			
	files must have names such as			
	" <sample>_S1_L1_R2_001.fastq.gz", where</sample>			
	<sample> is specified in input_csv_file.</sample>			
	If fastq files are Sequence Read Archive (SRA) data,			
	use something like _2.fastq.gz, where _2 refers to			
	the second reads, so that Read 2 files must have names			
	such as " <sample>_2.fastq.gz" where <sample> is</sample></sample>			
	specified in input_csv_file .			
	If fastq files are not zipped, substitute .fastq for			
	.fastq.gz in the corresponding pattern above.			

Table 2 – continued from previous page

Name	Description	Example	Default
barcode_read		"read1"	"read1"
	Specify which read contains cell barcodes and UMIs:		
	either read1 or read2. This only applies to samples		
	with Assay None in input_csv_file.		
	Otherwise, samples with Assay type ShareSeq		
	automatically specify read2 for cell barcodes and		
	UMIs, while read1 for cDNAs;		
	samples of all the other know <i>Assay</i> types		
	automatically specify read1 for cell barcodes and		
	UMIs, while read2 for cDNAs.		
	Owns, while readz for convas.		
soloType	[STARsolo option] Type of single-cell RNA-seq,	"CB_UMI_Simple"	None
solotype	choosing from CB_UMI_Simple, CB_UMI_Complex,	CB_OMI_Simple	Tione
	CB_samTagOut, SmartSeq.		
soloCBwhite		gs://my_bucket/my_white_	lisNtwte
3010CB WIIIC	[STARsolo option] Cell barcode white list in either	gs.//my_backed/my_wmte_	IIIIIIII
	plain text or gzipped format.		
	Notice: If specified, it will overwrite the white lists for		
	ALL the samples in your sample sheet.		
soloFeatures	[STARsolo option] Genomic features for which the	"Gene GeneFull SJ Velo-	"Gene"
solor catures	UMI counts per Cell Barcode are collected (can choose	cyto"	Och
	multiple items):	Cyto	
	• Gene: reads match the gene transcript		
	• <i>SJ</i> : splice junctions reported in SJ.out.tab		
	• GeneFull: count all reads overlapping genes' ex-		
	ons and introns		
	• <i>Velocyto</i> : calculate Spliced, Unspliced, and Am-		
	biguous counts per cell per gene similar to the ve- locyto.py tool developed by LaManno et al. Note		
	that Velocyto requires Gene.		
	that velocyto requires Gene.		
soloMultiMa	ppSfEARsolo option] Counting method for reads mapping	"Unique"	"Unique"
55151VIGIUIVIA	to multiple genes (can choose multiple items):	Jinque	Jinque
	• <i>Unique</i> : count only reads that map to unique		
	genes<i>Uniform</i>: uniformly distribute multi-genic UMIs		
	to all genes		
	• Rescue: distribute UMIs proportionally to		
	unique+uniform counts (first iteartion of EM)		
	• <i>PropUnique</i> : distribute UMIs proportionally to		
	unique mappers, if present, and uniformly if not		
	 EM: use Maximum Likelihood Estimation (MLE) 		
	to distribute multi-gene UMIs among their genes		
	to distribute mutil-gene Olvits among their genes		
soloCBstart	[STARsolo option] Cell barcode start position (1-based	1	1
5510CD5tart	coordinate).	•	1
soloCBlen	[STARsolo option] Cell barcode length.	16	16
soloUMIstart		17	17
	nate).		
	/-	<u> </u>	1

Table 2 – continued from previous page

Name	Description	Example	Default
soloUMIlen	[STARsolo option] UMI length.	10	10
soloBarcode	ReadLength [STARsolo option] Length of the barcode read - 1: equals to sum of <i>soloCBlen</i> and <i>soloUMIlen</i> 0: not defined, do not check. Notice: 0 is set to be default, which is different from STAR. This is in case users have barcode read sequenced of length 28 nt (standard for 10x 3'), but assay is 5' (CB+UMI length is 26 nt).	0	0
soloBarcode	M[ScTARsolo option] Identifies which read mate contains the barcode (CB+UMI) sequence: • 0: barcode sequence is on separate read, which should always be the last file in the input Read1 file list • 1: barcode sequence is a part of mate 1 • 2: barcode sequence is a part of mate 2	0	0
soloCBpositi	[STARsolo option] Position of Cell Barcode(s) on the barcode read. Presently only works when <i>solo_type</i> is CB_UMI_Complex, and barcodes are assumed to be on Read2. Format for each barcode: "startAnchor_startPosition_endAnchor_endPosition" start(end)Anchor defines the Anchor Base for the CB: 0: read start; 1: read end; 2: adapter start; 3: adapter end start(end)Position is the 0-based position with of the CB start(end) with respect to the Anchor Base String for different barcodes are separated by space.	"0_0_21 3_1_3_8"	
-	tion TARsolo option] Position of the UMI on the barcode read, same as soloCBposition	"3_9_3_14"	
-	e[SiFAResolo option] Adapter sequence to anchor barcodes.		
soloAdapterl	Missifate Research montaion] Maximum number of mismatches allowed in adapter sequence.	1	1

Table 2 – continued from previous page

Name	Description	Example	Default
soloCBmatc	WSTAPesolo option] Matching the Cell Barcodes to the	"1MM_multi"	"1MM_mul
	WhiteList, choosing from		
	• Exact: only exact matches allowed		
	• 1MM: only one match in whitelist with 1 mis-		
	matched base allowed. Allowed CBs have to have		
	at least one read with exact match		
	• 1MM_multi: multiple matches in whitelist with		
	1 mismatched base allowed, posterior probabil-		
	ity calculation is used choose one of the matches.		
	Allowed CBs have to have at least one read with		
	exact match. This option matches best with Cell-		
	Ranger 2.2.0		
	• 1MM_multi_pseudocounts: same as 1MM_multi,		
	but pseudocounts of 1 are added to all whitelist		
	barcodes		
	• 1MM_multi_Nbase_pseudocounts: same as		
	1MM_multi_pseudocounts, multimatching to		
	WL is allowed for CBs with N-bases. This option		
	matches best with CellRanger >= 3.0.0		
1.7 .01	ACCURD II O .: LVII .: I C. CAM	"CD LID"	
soloInputSA	MESSFE Ansolde Sptjon] When inputting reads from a SAM	"CR UR"	
	file (readsFileType SAM SE/PE), these SAM		
	attributes mark the barcode qualities (in proper order).		
	For instance, for 10X CellRanger or STARsolo BAMs,		
	usesoloInputSAMattrBarcodeSeq CR UR.		
	This parameter is required when running STARsolo		
1.1.404	with input from SAM.	"CX/ 11X/"	
soloInputSA	MESTER Resolde Option] When inputting reads from a SAM	"CY UY"	
	file (readsFileType SAM SE/PE), these SAM		
	attributes mark the barcode sequence (in proper or-		
	der). For instance, for 10X CellRanger or STARsolo		
	BAMs, usesoloInputSAMattrBarcodeQual		
	CY UY. If this parameter is – (default), the quality 'H'		
1 - C41	will be assigned to all bases.	"F"	"Fa
soloStrand	[STARsolo option] Strandedness of the solo libraries:	"Forward"	"Forward"
	• <i>Unstranded</i> : no strand information		
	• Forward: read strand same as the original RNA		
	molecule		
	• Reverse: read strand opposite to the original RNA		
	molecule		

Table 2 – continued from previous page

Name	Description	Example	Default
	 argSTARsolo option] Type of UMI deduplication (collapsing) algorithm: IMM_All: all UMIs with 1 mismatch distance to each other are collapsed (i.e. counted once) IMM Directional UMItools: follows the "directional" method from the UMI-tools by Smith, Heger and Sudbery (Genome Research 2017) IMM Directional: same as 1MM Directional UMItools, but with more stringent criteria for duplicate UMIs Exact: only exactly matching UMIs are collapsed NoDedup: no deduplication of UMIs, count all reads IMM CR: CellRanger2-4 algorithm for 1MM UMI collapsing 	"1MM_All"	"1MM_All"
soloUMIfilte	 **TARsolo option] Type of UMI filtering (for reads uniquely mapping to genes): -: basic filtering: remove UMIs with N and homopolymers (similar to CellRanger 2.2.0) **MultiGeneUMI: basic + remove lower-count UMIs that map to more than one gene **MultiGeneUMI_All: basic + remove all UMIs that map to more than one gene **MultiGeneUMI_CR: basic + remove lower-count UMIs that map to more than one gene, matching CellRanger > 3.0.0. Only works withsoloUMIdedup 1MM CR 	"MultiGeneUMI"	α_α

Table 2 – continued from previous page

Name	Table 2 – continued from previou		Default
	Description	Example "CallPangar2 2 3000 0 00	
	 [STARsolo option] Cell filtering type and parameters: • None: do not output filtered cells • TopCells: only report top cells by UMI count, followed by the exact number of cells • CellRanger2.2: simple filtering of CellRanger 2.2. Can be followed by numbers: number of expected cells, robust maximum percentile for UMI count, maximum to minimum ratio for UMI count. The harcoded values are from CellRanger: nExpectedCells=3000; max-Percentile=0.99; maxMinRatio=10 • EmptyDrops_CR: EmptyDrops filtering in CellRanger flavor. Please cite the original EmptyDrops paper: A.T.L Lunet al, Genome Biology, 20, 63 (2019): https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1662-y. Can be followed by 10 numeric parameters: nExpectedCells maxPercentile maxMinRatio indMin indMax umiMin umiMinFracMedian candMaxN FDR simN. The harcoded values are from CellRanger: 3000 0.99 10 45000 90000 500 0.01 20000 0.01 10000 	"CellRanger2.2 3000 0.99 10"	"CellRanger2.2 3000 0.99 10"
soloOutForm	a (SEARs Copplied) Field 3 in the Gene features.tsv file. If "-", then no 3rd field is output.	"Gene Expression"	"Gene Ex- pression"
outSAMtype		"BAM SortedByCoordinate"	"BAM SortedBy- Coordi- nate" for tenX_v3, tenX_v2, SeqWell and DropSeq assay types, "BAM Unsorted" otherwise.
star_version	STAR version to use. Currently support: 2.7.9a, 2.7.10a (2.7.10a_alpha_220601).	"2.7.10a"	"2.7.10a"
docker_regist	 rDocker registry to use: quay.io/cumulus for images on Red Hat registry; cumulusprod for backup images on Docker Hub. 	"quay.io/cumulus"	"quay.io/cumul

Table 2 – continued from previous page

Name	Description	Example	Default
zones	Google cloud zones to consider for execution.	"us-east1-d us-west1-a us-	"us-
		west1-b"	central1-
			a us-
			central1-
			b us-
			central1-
			c us-
			central1-f
			us-east1-b
			us-east1-c
			us-east1-d
			us-west1-a
			us-west1-b
			us-west1-
			c"
num_cpu	Number of CPUs to request for count per sample.	32	32
memory	Memory size string for count per sample.	"120G"	"120G"
disk_space	Disk space in GB needed for count per sample.	500	500
backend	Cloud infrastructure backend to use. Available options:	"gcp"	"gcp"
	• gcp for Google Cloud;		
	• aws for Amazon AWS;		
	• local for local machine.		
preemptible	Number of maximum preemptible tries allowed. This	2	2
	works only when backend is gcp.		
awsQueueAr	n The AWS ARN string of the job queue to be used. This	"arn:aws:batch:us-east-	٠,٠
	only works for aws backend.	1:xxx:job-queue/priority-	
		gwf"	

Workflow outputs

See the table below for *star_solo* workflow outputs.

Name	Туре	Description
count_outputs	Array[String]	
		Google Bucket URI of output directories of all samples. Each folder is for one sample in the input sample sheet.
		For the count matrices generated, taking Gene solo
		<pre>feature for example, they are in <output_folder>/<sample_id>/Solo.out/ Gene/raw/ and <output_folder>/<sample_id>/Solo.out/ Gene/filtered/</sample_id></output_folder></sample_id></output_folder></pre>
		subfolders.
		Inside each subfolder, there are 2 formats: mtx, and h5 following 10x HDF5 format.
starsoloLogs	Array[File]	Google Bucket URIs of STAR logs for each sample, respectively. This is the Log.out if running STAR locally, which is important for debugging.

Prebuilt genome references

We've built the following scRNA-seq references for users' convenience:

Keyword	Description		
GRCh38-2020-A	Human GRCh38, comparable to cellranger reference 2020-A (GENCODE v32/Ensembl		
	98)		
mm10-2020-A	Mouse mm10, comparable to cellranger reference 2020-A (GENCODE vM23/Ensembl 98)		
GRCh38-and-	Human GRCh38 (GENCODE v32/Ensembl 98) and mouse mm10 (GENCODE		
mm10-2020-A	vM23/Ensembl 98)		

Note: For **snRNA-seq** data, please choose the corresponding scRNA-seq reference above, and add GeneFull in the *soloFeatures* input.

Build STARSolo References

We provide a wrapper of STAR to build sc/snRNA-seq references. Please follow the instructions below.

1. Import starsolo_create_reference

Import *starsolo_create_reference* workflow to your workspace by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/STARsolo_create_reference** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *starsolo_create_reference* workflow in the drop-down menu.

2. Upload required data to Cloud bucket

Required data include the genome FASTA file and gene annotation GTF file of the target genome reference.

3. Workflow input

Required inputs are highlighted in bold.

Name	Description	Example	Default
input_fasta	Input genome reference in FASTA format.	"gs://fc-e0000000-	
		0000-0000-0000-	
		000000000000/mm-	
		10/genome.fa"	
input_gtf	Input gene annotation file in GTF format.	"gs://fc-e0000000-	
		0000-0000-0000-	
		000000000000/mm-	
		10/genes.gtf"	
genome	Genome reference name. This is used for specifying the	"mm-10"	
Berrame	name of the genome index generated.	11111 10	
output direc	tally ud bucket URI of the output directory.	"gs://fc-e0000000-	
output_un co	ctangua bucket order of the output affectory.	0000-0000-0000-	
		1	
		000000000000/starsolo-	
		reference"	
docker_regis	ryDocker registry to use:	"quay.io/cumulus"	"quay.io/cumulu
	• quay.io/cumulus for images on Red Hat		
	registry;		
	• cumulusprod for backup images on Docker		
	Hub.		
star_version	STAR version to use. Currently support: 2.7.9a and	"2.7.10a"	"2.7.10a"
	2.7.10a (2.7.10a_alpha_220601).		
num_cpu	Number of CPUs to request for count per sample.	32	32
memory	Memory size string for count per sample.	"80G"	"80G"
disk_space	Disk space in GB needed for count per sample.	100	100
zones	Google cloud zones to consider for execution.	"us-east1-d us-west1-a us-	"us-
Zones	Google cloud zones to consider for execution.	west1-b"	central1-
		west o	
			a us-
			central1-
			b us-
			central1-
			c us-
			central1-f
			us-east1-b
			us-east1-c
			us-east1-d
			us-west1-a
			us-west1-b
			us-west1-
			c"
1 1		66	-
backend	Cloud infrastructure backend to use. Available options:	"gcp"	"gcp"
	• gcp for Google Cloud;		
	• aws for Amazon AWS;		
	• local for local machine.		
preemptible	Number of maximum preemptible tries allowed. This	2	2
	works only when backend is gcp.		
awsQueueAr	n The AWS ARN string of the job queue to be used. This	"arn:aws:batch:us-east-	6677
	only works for aws backend.	1:xxx:job-queue/priority-	
	-		
		gwf"	

4. Workflow Output

Name	Туре	Description
output_referen	ceFile	Gzipped reference folder with name " <genome>-starsolo.tar.gz", where</genome>
		<pre><genome> is specified by workflow input genome above. The workflow will</genome></pre>
		save a copy of it under output_directory specified in workflow input above.

1.1.7 Demultiplex genetic-pooling/cell-hashing/nucleus-hashing sc/snRNA-Seq data

This demultiplexing workflow generates gene-count matrices from cell-hashing/nucleus-hashing/genetic-pooling data by demultiplexing.

In the workflow, demuxEM is used for analyzing cell-hashing/nucleus-hashing data, while souporcell and popscle (including *demuxlet* and *freemuxlet*) are for genetic-pooling data.

Prepare input data and import workflow

1. Run cellranger_workflow

To demultiplex, you'll need raw gene count and hashtag matrices for cell-hashing/nucleus-hashing data, or raw gene count matrices and genome BAM files for genetic-pooling data. You can generate these data by running the cellranger_workflow.

Please refer to the cellranger_workflow tutorial for details.

When finished, you should be able to find the raw gene count matrix (e.g. raw_gene_bc_matrices_h5.h5), hashtag matrix (e.g. sample_1_ADT.csv) / genome BAM file (e.g. possorted_genome_bam.bam) for each sample.

2. Import demultiplexing

Import *demultiplexing* workflow to your workspace by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/cumulus/Demultiplexing** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *demultiplexing* workflow in the drop-down menu.

3. Prepare a sample sheet

3.1 Sample sheet format:

Create a sample sheet, **sample_sheet_demux.csv**, which describes the metadata for each pair of RNA and hashtag data. A brief description of the sample sheet format is listed below (**required column headers are shown in bold**).

Column	Description		
OUTNAME	Output name for one pair of RNA and hashtag data. Must be unique per pair.		
RNA	Google bucket url to the raw gene count matrix generated in Step 1.		
TagFile/ADT	Google bucket url to the hashtag file generated in Step 1. The column name can be		
	either <i>TagFile</i> or <i>ADT</i> , where <i>ADT</i> is for backward compatibility with older snapshots.		
TYPE	Assay type, which can be cell-hashing, nucleus-hashing, or		
	genetic-pooling.		
Genotype	Google bucket url to the reference genotypes in vcf.gz format. This column is re-		
	quired in the following cases:		
	• Run genetic-pooling assay with souporcell algorithm (i.e. TYPE is		
	<pre>genetic-pooling, demultiplexing_algorithm input is souporcell):</pre>		
	- Run with reference genotypes, i.e. <i>souporcell_de_novo_mode</i> is false.		
	- Run in <i>de novo</i> mode (i.e. <i>souporcell_de_novo_mode</i> is true), but need to		
	match the resulting cluster names by information from reference genotypes		
	(see description of <i>souporcell_rename_donors</i> input below).		
	• Run genetic-pooling assay with popscle algorithm (i.e. TYPE is		
	genetic-pooling, demultiplexing_algorithm input is popscle):		
	- popscle_num_samples input is 0. In this case, demuxlet will be run with		
	reference genotypes.		
	- popscle_num_samples input is larger than 0. In this case, reference geno-		
	types will be only used to generate pileups, then freemuxlet will be used for		
	demultiplexing without reference genotypes.		

Example:

3.2 Upload your sample sheet to the workspace bucket:

Use gsutil (you already have it if you've installed gcloud CLI) in your unix terminal to upload your sample sheet to workspace bucket.

Example:

Workflow inputs

Below are inputs for *demultiplexing* workflow. We'll first introduce global inputs, and then inputs for each of the demultiplexing tools. Notice that required inputs are in bold.

global inputs

Name	Description	Example	Default
input_samp	e Ishee CSV file describing metadata of RNA and hashtag	"gs://fc-e0000000-	
	data pairing.	0000-0000-0000-	
		000000000000/sample_she	et_demux.csv''
output_direc	etally is is the output directory (gs url + path) for all results.	"gs://fc-e0000000-	
	There will be one folder per RNA-hashtag data pair un-	0000-0000-0000-	.,,,
	der this directory.	0000000000000/demux_outj	out"
genome	Reference genome name. Its usage depends on the assay type: • For cell-hashing or nucleus-hashing, only write this name as an annotation into the resulting count matrix file. • For genetic-pooling, if demultiplexing_algorithm input is souporcell, you should choose one name from this genome reference list. • For genetic-pooling, if demultiplexing_algorithm input is popscle, reference genome name is not needed.	"souporcell"	"souporcell"
	data. Options: • "souporcell": Use souporcell, a reference-genotypes-free algorithm for demultiplexing droplet scRNA-Seq data. • "popscle": Use popscle, a canonical algorithm for demultiplexing droplet scRNA-Seq data, including demuxlet (with reference genotypes) and freemuxlet (reference-genotype-free) components.		
min_num_ge	n ⊕ nly demultiplex cells/nuclei with at least	100	100
iiiii_nuiii_ge	<pre><min_num_genes> expressed genes</min_num_genes></pre>	100	100
zones	Google cloud zones to consider for execution.	"us-east1-d us-west1-a us-	"us-
		west1-b"	central1- a us- central1- b us- central1- c us- central1-f us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1-
	Pocker registry to use. "quay.io/cumulus" for images on Red Hat registry; "cumulusprod" for backup images on Docker Hub.	"quay.io/cumulus"	"quay.io/cumulu
config_version	tober 30, 2022 inversion of config docker image to use. This docker is used for parsing the input sample sheet for downstream execution. Available options: 0.2, 0.1.	"0.2"	" _{0.2} " 79
	Cloud infrastructure backend to use. Available options:	"gcp"	"gcp"

demuxEM inputs

Name	Description	Example	Default
demuxEM_a	aphamnx EMnpdesmeter. The Dirichlet prior concentration	0.0	0.0
	parameter (alpha) on samples. An alpha value < 1.0 will		
	make the prior sparse.		
demuxEM_	nidenum EM hiparameter. Only demultiplex cells/nuclei	100	100
	with at least <demuxem_min_num_umis> of UMIs.</demuxem_min_num_umis>		
demuxEM_i	nindesingux AlMiashutagneter. Any cell/nucleus with less than	10.0	10.0
	<pre><demuxem_min_signal_hashtag> hashtags from the</demuxem_min_signal_hashtag></pre>		
	signal will be marked as unknown.		
demuxEM_1	randlemuxEate parameter. The random seed used in the	0	0
	KMeans algorithm to separate empty ADT droplets		
	from others.		
demuxEM_	gentenatex. His growth pastim extension of diagnos-	true	true
	tic plots, including the background/signal between HTO		
	counts, estimated background probabilities, HTO distri-		
1 50.6	butions of cells and non-cells, etc.	(ATTORN)	
demuxEM_	gentenatex Et departmenter. If generate violin plots us-	"XIST"	
	ing gender-specific genes (e.g. Xist). <de-< td=""><td></td><td></td></de-<>		
	muxEM_generate_gender_plot> is a comma-separated		
damuurEM	list of gene names verdiconuxEM version to use. Choose from "0.1.7", "0.1.6"	"0.1.7"	"0.1.7"
demuxelvi_	and "0.1.5".	0.1.7	0.1.7
domuyEM	number of CPUs to request for	8	8
demuxelvi_	demuxEM per pair.	8	0
demuyEM	mediconty EM parameter. Memory size string for de-	"10G"	"10G"
demuxEM_	muxEM per pair.	100	100
damuyEM	disklenpaxEM parameter. Disk space (integer) in GB	20	20
delliuxEM_	needed for demuxEM per pair.	20	20
	needed for demaxely per pair.		

souporcell inputs

Name	Description	Example	Default
souporcell_v	version to use. Available versions:	"2021.03"	"2021.03"
• –	• 2021.03: Based on commitment 1bd9f1 on		
	2021/03/07.		
	• 2020.07: Based on commitment 0d09fb on		
	2020/07/27.		
	• 2020.03: Based on commitment eeddcd on		
	2020/03/31.		
	2020/03/31.		
souporcell i	num_clusters	8	1
_			
	souporcell parameter. Number of expected clusters		
	when doing clustering.		
	This needs to be set when running souporcell.		
souporcell (le_soomornooklparameter.	true	true
souporcen_c	If true, run souporcell in de novo mode without	duc	uuc
	reference genotypes:		
	C 11		
	- If input souporcell_common_variants is fur-		
	ther provided, use this common variants list		
	instead of calling SNPs de novo.		
	- If a reference genotype vcf file is provided		
	in the sample sheet, use it only for matching		
	the cluster labels computed by souporcell.		
	• If false, run souporcell with		
	known_genotypes option using the		
	reference genotype vcf file specified in sample		
	sheet.		
souporcell 1	num_clusters	8	1
	souporcell parameter. Number of expected clusters		
	when doing clustering.		
	This needs to be set when running souporcell.		
souporcell (common_variants	"1000genome.common.var	iants vcf oz"
souporeen_		Tooogenemere and the second	
	souporcell parameter. Users can provide a common		
	variants list in VCF format for Souporcell to use,		
	instead of calling SNPs de novo.		
	Notice: This input is enabled only when		
	souporcell_de_novo_mode is false.		
couporcall :	Skiponemanell parameter. Skip remap step. Only recom-	true	false
souporcen_s	mended in non denovo mode or common variants are	true	14150
11	provided.	"CD1 CD2 CD2 CD4"	
souporceII_1	ensompodorklingarameter. A comma-separated list of donor	"CB1,CB2,CB3,CB4"	
	names for matching clusters achieved by souporcell.		
	Must be consistent with <i>souporcell_num_clusters</i> input.		
	• If this input is empty, use cluster labels from the		
	reference genotype vcf file if provided in the sam-		
	ple sheet; if this vcf file is not provided, simply		
	name clusters as Donor1, Donor2,		
1.1. 2.3.0 O	this input is not empty, and a reference geno-		8-
	type ver me is provided in the sample sheet, first		
	match the cluster labels using those from this vcf		
	file, then rename to donor names specified in this		
	innut	1	

Popscle inputs

Name	Description	Example	Default
popscle_num	panpsiles parameter. Number of samples to be multiplexed together: • If 0, run with <i>demuxlet</i> using reference genotypes. • Otherwise, run with <i>freemuxlet</i> in de novo mode without reference genotypes.	4	0
popscle_min_	_MMoscle parameter. Minimum mapping quality to consider (lower MQ will be ignored).	20	20
popscle_min_	The pscle parameter. Minimum distance to the tail (lower will be ignored).	0	0
popscle_tag_	grapscle parameter. Tag representing readgroup or cell barcodes, in the case to partition the BAM file into multiple groups. For 10x genomics, use CB.	"CB"	"CB"
popscle_tag_	Updipscle parameter. Tag representing UMIs. For 10x genomics, use UB.	"UB"	"UB"
popscle_field	popscle parameter. FORMAT field to extract from: genotype (GT), genotype likelihood (GL), or posterior probability (GP).	"GT"	"GT"
popscle_alph	a popscle parameter. Grid of alpha to search for, in a comma separated list format of all alpha values to be considered.	"0.1,0.2,0.3,0.4,0.5"	"0.1,0.2,0.3,0.4,0.5
popscle_rena		"CB1,CB2,CB3,CB4"	
	popscle parameter. A comma-separated list of donor names for renaming clusters achieved by popscle. Must be consistent with <i>popscle_num_samples</i> input. By default, the resulting donors are <i>Donor1</i> , <i>Donor2</i> ,		
popscle_vers	 iopopscle parameter. popscle version to use. Available options: 2021.05: Based on commitment da70fc7 on 2021/05/05. 0.1b: Based on version 0.1-beta released on 2019/10/03. 	"2021.05"	"2021.05"
popscle_num	_ppp scle parameter. Number of CPU used by popscle per pair.	1	1
	oppspscle parameter. Memory size string per pair.	"120G"	"120G"
popscle_extra	n_pbiplsc_kppaceameter. Extra disk space size (integer) in GB needed for popscle per pair, besides the disk size required to hold input files specified in the sample sheet.	100	100

Workflow outputs

See the table below for *demultiplexing* workflow outputs.

Name	Туре	Description
output_folders	Array[String]	A list of Google Bucket URLs of the output folders.
		Each folder is associated with one RNA-hashtag pair in
		the given sample sheet.
output_zarr_files	Array[File]	A list of demultiplexed RNA count matrices in zarr for-
		mat. Each zarr file is associated with one RNA-hashtag
		pair in the given sample sheet. Please refere to sec-
		tion load demultiplexing results into Python and R for
		its structure.

In the output subfolder of each cell-hashing/nuclei-hashing RNA-hashtag data pair, you can find the following files:

Name	Description
output_name_demux.zarr.zip	Demultiplexed RNA raw count matrix in zarr format. Please refer to section load demultiplexing results into Python and R for its structure.
output_name.out.demuxEM.zarr.zip	
	This file contains intermediate results for both RNA and hashing count matrices.
	To load this file into Python, you need to first install Pegasusio on your local machine. Then use import pegasusio as io; data = io.read_input("output_name.out.demuxEM.zarr.zip") in Python environment.
	It contains 2 UnimodalData objects: one with key name suffix -hashing is the hashtag count matrix, the other one with key name suffix -rna is the demultiplexed RNA count matrix.
	To load the hashtag count matrix, type hash_data = data.get_data(' <genome>-hashing'), where <genome> is the genome name of the data. The count matrix is hash_data.X; cell barcode attributes are stored in hash_data.obs; sample names are in hash_data.var_names. Moreover, the estimated background probability regarding hashtags is in</genome></genome>
	hash_data.uns['background_probs'].
	To load the RNA matrix, type rna_data =
	data.get_data(' <genome>-rna'), where <genome> is the genome name of the data. It only contains cells which have estimated sample assignments. The count matrix is rna_data.X. Cell barcode attributes are stored in rna_data.obs: rna_data.obs['demux_type'] stores the estimated droplet types (singlet/doublet/unknown) of cells; rna_data.obs['assignment'] stores the estimated hashtag(s) that each cell belongs to. Moreover, for cell-hashing/nucleus-hashing data, you can find estimated sample fractions (sample1, sample2,, samplen, background) for each droplet in rna_data.obsm['raw_probs'].</genome></genome>
output_name.ambient_hashtag.hist.pc	f Optional output. A histogram plot depicting hashtag distributions of empty droplets and non-empty droplets.
output_name.background_probabilitie	es (Dipatiputal output. A bar plot visualizing the estimated hashtag background probability distribution.
output_name.real_content.hist.pdf	Optional output. A histogram plot depicting hashtag distributions of not-real-cells and real-cells as defined by total number of expressed genes in the RNA assay.
output_name.rna_demux.hist.pdf	Optional output. A histogram plot depicting RNA UMI distribution for singlets, doublets and unknown cells.
output_name.gene_name.violin.pdf	Optional outputs. Violin plots depicting gender-specific gene expression across samples. We can have multiple plots if a gene list is provided in demuxEM_generate_gender_plot field of cumulus_hashing_cite_seq inputs.

In the output subfolder of each genetic-pooling RNA-hashtag data pair generated by *souporcell*, you can find the following files:

Name	Description	
output_name_demux.zarr.zip	Demultiplexed RNA count matrix in zarr format. Please refer to section	
	load demultiplexing results into Python and R for its structure.	
clusters.tsv Inferred droplet type and cluster assignment for each cell b		
cluster_genotypes.vcf	Inferred genotypes for each cluster.	
match_donors.log	Log of matching donors step, with information of donor matching included.	

In the output subfolder of each genetic-pooling RNA-hashtag data pair generated by *demuxlet*, you can find the following files:

Name	Description
output_name_demux.zarr.zip	Demultiplexed RNA count matrix in zarr format. Please refer to section
	load demultiplexing results into Python and R for its structure.
output_name.best (demuxlet) or	Inferred droplet type and cluster assignment for each cell barcode.
output_name.clust1.samples.gz	
(freemuxlet)	

Load demultiplexing results into Python and R

To load demultiplexed RNA count matrix into Python, you need to install Python package pegasusio first. Then follow the codes below:

```
import pegasusio as io
data = io.read_input('output_name_demux.zarr.zip')
```

Once you load the data object, you can find estimated droplet types (singlet/doublet/unknown) in data. obs['demux_type']. Notices that there are cell barcodes with no sample associated, and therefore have no droplet type.

You can also find estimated sample assignments in data.obs['assignment'].

For cell-hashing/nucleus-hashing data, if one sample name can correspond to multiple feature barcodes, each feature barcode is assigned to a unique sample name, and this deduplicated sample assignment results are in data. obs['assignment.dedup'].

To load the results into R, you need to install R package reticulate in addition to Python package pegasusio. Then follow the codes below:

```
library(reticulate)
ad <- import("pegasusio", convert = FALSE)
data <- ad$read_input("output_name_demux.zarr.zip")</pre>
```

Results are in data\$obs['demux_type'], data\$obs['assignment'], and similarly as above, for cell-hashing/nucleus-hashing data, you'll find an additional field data\$obs['assignment.dedup'] for deduplicated sample assignment in the case that one sample name can correspond to multiple feature barcodes.

1.1.8 Run CellBender for ambient RNA removal

cellbender workflow wraps CellBender tool for removing technical artifacts from high-throughput single-cell/single-nucleus RNA sequencing data.

This workflow is modified from the official BSD-3-Clause licensed CellBender WDL workflow, with adding the support on scattering over multiple samples simultaneously.

Prepare input data and import workflow

1. Run cellranger_workflow

To demultiplex, you'll need raw gene count and hashtag matrices for cell-hashing/nucleus-hashing data, or raw gene count matrices and genome BAM files for genetic-pooling data. You can generate these data by running the cellranger_workflow.

Please refer to the cellranger_workflow tutorial for details.

When finished, you should be able to find the raw gene count matrix (e.g. raw_feature_bc_matrix.h5 or raw_gene_bc_matrices_h5.h5) for each sample.

2. Import cellbender

Import *cellbender* workflow to your workspace by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/cumulus/CellBender** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cellbender* workflow in the drop-down menu.

3. Prepare a sample sheet

Create a TSV-format sample sheet (say **cellbender_sheet.tsv**), which describes the metadata for each scRNA-Seq sample. Notice that the first column specifies sample names, and the second column specifies the Cloud URI of the **raw** gene-count matrices generated in Step 1.

An example sample sheet is the follow:

```
sample_1gs://exp/data_1/raw_feature_bc_matrix.h5sample_2gs://exp/data_2/raw_feature_bc_matrix.h5sample_3gs://exp/data_3/raw_feature_bc_matrix.h5
```

Then upload your sample sheet to your Terra workspace's bucket using gsutil. For example:

Workflow inputs

Below are inputs for *CellBender* workflow. Notice that required inputs are **in bold**:

Name	Description	Example	Default
input_tsv_	file Input TSV file describing metadata of scRNA-Seq sam-	"gs://fc-e0000000-	
-	ples.	0000-0000-0000-	
		000000000000/my-	
		project/cellbender_sheet.tsv	,', '
output dir	rectally is is the output directory URI for all results. There	"gs://fc-e0000000-	
. –	will be one subfolder per sample under this directory.	0000-0000-0000-	
	,	000000000000/my-	
		project/cellbender_output"	
expected c	ellsNumber of cells expected in the dataset (a rough esti-	2048	None
expected_c	mate within a factor of 2 is sufficient).	2046	None
total draml	ets_Tihedudavalmber of droplets from the rank-ordered	25000	25000
total_drops	-	23000	23000
	UMI plot that will be analyzed. The largest to-		
	tal_droplets_included droplets will have their cell prob-		
	abilities inferred as an output.	//C 1111	// 0 1111
model	Which model is being used for count data:	"full"	"full"
	• "simple" does not model either ambient RNA or		
	random barcode swapping (for debugging pur-		
	poses – not recommended).		
	 "ambient" assumes background RNA is incorpo- 		
	rated into droplets.		
	• "swapping" assumes background RNA comes		
	from random barcode swapping.		
	• "full" uses a combined ambient and swapping		
	model.		
low count	threshallets with UMI counts below this number are com-	15	15
	pletely excluded from the analysis. This can help iden-		
	tify the correct prior for empty droplet counts in the rare		
	case where empty counts are extremely high (over 200).		
fpr	Target false positive rate in (0, 1). A false positive is	"0.01 0.05 0.1"	"0.01"
трі	a true signal count that is erroneously removed. More	0.01 0.03 0.1	0.01
	background removal is accompanied by more signal re-		
	moval at high values of FPR. You can specify multiple		
	values by giving a space-separated string, which will		
	create multiple output files.		
epochs	Number of epochs to train.	150	150
z_dim	Dimension of latent variable z.	100	100
z_layers	Dimension of hidden layers in the encoder for z . For	"500 100 300"	"500"
	multiple layers, specify them in space-separated string		
	format.		
empty_dro	training gradeticit the fraction of the training data each	0.5	0.5
	epoch that is drawn (randomly sampled) from surely		
	empty droplets.		
blacklist g	eneinteger indices of genes to ignore entirely. In the out-	"0 1 2"	4499
-	put count matrix, the counts for these genes will be		
	set to zero. For multiple genes, specify them in space-		
	see to zero. For multiple genes, specify them in space- separated string format.		
loornina ==		1e-4	10.4
learning_ra		15-4	1e-4
	OneCycle learning rate schedule is used, where the up-		
	per learning rate is ten times this value. (For this value,		
	probably do not exceed 1e-3).		
exclude_an	tipdeliyalcopthixeflag will cause remove-background to oper-	false	false
	ate on gene counts only, ignoring other features.		
docker_reg	istrDocker registry to use.	"quay.io/cumulus"	"quay.io/cum
.1. 2.3.07	October 30,2022 to unulus" for images on Red Hat reg-		87
	istry;		
	• "cumulusprod" for backup images on Docker		
	Huh		

Hub.

Workflow outputs

See the table below for *cellbender* workflow outputs:

Name	Туре	Description
cellbender_outputs	Array[String]	A list of Cloud URIs of the output folders. Each folder
		is associated with one scRNA-seq sample in the given
		sample sheet.

1.1.9 Run Cumulus for sc/snRNA-Seq data analysis

Run Cumulus analysis

Prepare Input Data

Case One: Sample Sheet

Follow the steps below to run **cumulus** on Terra.

- 1. Create a sample sheet, **count_matrix.csv**, which describes the metadata for each sample count matrix. The sample sheet should at least contain 2 columns *Sample* and *Location*. *Sample* refers to sample names and *Location* refers to the location of the channel-specific count matrix in either of

- Drop-seq format. For example, gs://fc-e0000000-0000-0000-0000-000000000000/my_dir/sample_2/sample_2.umi.dge.txt.gz.

- tsv or loom format.

An optional Reference column can be used to select samples generated from a same reference (e.g. mm10). If the count matrix is in either DGE, mtx, csv, tsv, or loom format, the value in this column will be used as the reference since the count matrix file does not contain reference name information. The only exception is mtx format. If users do not provide a Reference column, we will use the basename of the folder containing the mtx file as its reference. In addition, the Reference column can be used to aggregate count matrices generated from different genome versions or gene annotations together under a unified reference. For example, if we have one matrix generated from mm9 and the other one generated from mm10, we can write mm9_10 for these two matrices in their Reference column. Pegasus will change their references to mm9_10 and use the union of gene symbols from the two matrices as the gene symbols of the aggregated matrix. For HDF5 files (e.g. 10x v2/v3), the reference name contained in the file does not need to match the value in this column. In fact, we use this column to rename references in HDF5 files. For example, if we have two HDF files, one generated from mm9 and the other generated from mm10. We can set these two files' Reference column value to mm9_10, which will rename their reference names into mm9_10 and the aggregated matrix will contain all genes from either mm9 or mm10. This renaming feature does not work if one HDF5 file contain multiple references (e.g. mm10 and GRCh38).

The sample sheet can optionally contain two columns - nUMI and nGene. These two columns define minimum number of UMIs and genes for cell selection for each sample in the sample sheet. nGene column overwrites minimum_number_of_genes parameter.

You are free to add any other columns and these columns will be used in selecting channels for futher analysis. In the example below, we have *Source*, which refers to the tissue of origin, *Platform*, which refers to the sequencing platform, *Donor*, which refers to the donor ID, and *Reference*, which refers to the reference genome.

Example:

If you ran **cellranger_workflow** previously, you should already have a template **count_matrix.csv** file that you can modify from **generate count config**'s outputs.

1. Upload your sample sheet to the workspace.

Example:

```
gsutil cp /foo/bar/projects/my_count_matrix.csv gs://fc-e0000000-0000-0000-0000-0000-00000-00000/
```

2. Import *cumulus* workflow to your workspace.

Import by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/cumulus/Cumulus** for import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *cumulus* workflow in the drop-down menu.

3. In your workspace, open cumulus in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below

- Run workflow with inputs defined by file paths
- Run workflow(s) with inputs defined by data table

and click the SAVE button.

Case Two: Single File

Alternatively, if you only have one single count matrix for analysis, you can go without sample sheets. **Cumulus** currently supports the following formats:

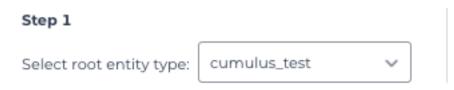
- 10x genomics v2/v3 format (hdf5);
- Drop-seq dge format;
- csv (no HCA DCP format), tsv or loom formats.

Simply upload your data to the Google Bucket of your workspace, and specify its URL in input_file field of Cumulus' global inputs (see below). For hdf5 files, there is no need to specify genome names. For other formats, you can specify genome name in considered_refs field in cluster inputs; otherwise, default name '' will be used.

In this case, the aggregate_matrices step will be skipped.

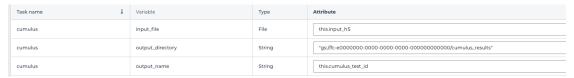
Case Three: Multiple samples without aggregation

Sometimes, you may want to run Cumulus on multiple samples simultaneously. This is different from Case one, because samples are analyzed separately without aggregation.


1. To do it, you need to first create a data table on Terra. An example TSV file is the following:

You are free to add more columns, but sample ids and URLs to RNA count matrix files are required. I'll use this example TSV file for the rest of steps in this case.

1. Upload your TSV file to your workspace. Open the DATA tab on your workspace. Then click the upload button on left TABLE panel, and select the TSV file above. When uploading is done, you'll see a new data table with name "cumulus_test":



- 2. Import *cumulus* workflow to your workspace as in Case one. Then open cumulus in WORKFLOW tab. Select Run workflow(s) with inputs defined by data table, and choose *cumulus_test* from the drop-down menu.
 - Run workflow with inputs defined by file paths
 - Run workflow(s) with inputs defined by data table

- 3. In the input field, specify:
- input_file: Type this.input_h5, where this refers to the data table selected, and input_h5 is the column name in this data table for RNA count matrices.
- output_name: Type this.cumulus_test_id, where cumulus_test_id is the column name in data table for sample ids.

An example is in the screen shot below:

Then finish setting up other inputs following the description in sections below. When you are done, click SAVE, and then RUN ANALYSIS.

Cumulus steps:

Cumulus processes single cell data in the following steps:

- 1. **aggregate_matrices** (optional). When given a CSV format sample sheet, this step aggregates channel-specific count matrices into one big count matrix. Users can specify which channels they want to analyze and which sample attributes they want to import to the count matrix in this step. Otherwise, if a single count matrix file is given, skip this step.
- 2. **cluster**. This is the main analysis step. In this step, **Cumulus** performs low quality cell filtration, highly variable gene selection, batch correction, dimension reduction, diffusion map calculation, graph-based clustering and 2D visualization calculation (e.g. t-SNE/UMAP/FLE).
- 3. **de_analysis**. This step is optional. In this step, **Cumulus** can calculate potential markers for each cluster by performing a variety of differential expression (DE) analysis. The available DE tests include Welch's t test, Fisher's exact test, and Mann-Whitney U test. **Cumulus** can also calculate the area under ROC (AUROC) curve values for putative markers. If find_markers_lightgbm is on, **Cumulus** will try to identify cluster-specific markers by training a LightGBM classifier. If the samples are human or mouse immune cells, **Cumulus** can also optionally annotate putative cell types for each cluster based on known markers.
- 4. **plot**. This step is optional. In this step, **Cumulus** can generate 6 types of figures based on the **cluster** step results:
 - **composition** plots which are bar plots showing the cell compositions (from different conditions) for each cluster. This type of plots is useful to fast assess library quality and batch effects.
 - umap and net_umap: UMAP like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - tsne: FIt-SNE plots. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - **fle** and **net_fle**: FLE (Force-directed Layout Embedding) like plots based on different algorithms, respectively. Users can specify cell attributes (e.g. cluster labels, conditions) for coloring side-by-side.
 - If input is CITE-Seq data, there will be **citeseq_umap** plots which are UMAP plots based on epitope expression.
- 5. cirro_output. This step is optional. Generate Cirrocumulus inputs for visualization using Cirrocumulus .
- 6. **scp_output**. This step is optional. Generate analysis result in Single Cell Portal (SCP) compatible format.

In the following sections, we will first introduce global inputs and then introduce the WDL inputs and outputs for each step separately. But please note that you need to set inputs from all steps simultaneously in the Terra WDL.

Note that we will make the required inputs/outputs bold and all other inputs/outputs are optional.

global inputs

Name	Description	Example	Default
input_file	Input CSV sample sheet describing metadata of each	"gs://fc-e0000000-	
	10x channel, or a single input count matrix file	0000-0000-0000-	
		0000000000000/my_count_i	matrix.csv"
output_dire	ct@ryogle bucket URL of the output directory.	"gs://fc-e0000000-	
-		0000-0000-0000-	
		000000000000/my_results_	dir"
output_nam	e This is the name of subdirectory for the current sample;	"my_sample"	
• –	and all output files within the subdirectory will have this		
	string as the common filename prefix.		
default refer	enlesample count matrix is in either DGE, mtx, csv, tsv	"GRCh38"	
_	or loom format and there is no Reference column in the		
	csv_file, use default_reference as the reference string.		
pegasus ver	idregasus version to use for analysis. Versions available:	"1.4.3"	"1.4.3"
pegasas_ver	1.4.3, 1.4.2, 1.4.0, 1.3.0.	1	1.1.5
docker regis	rr Docker registry to use. Options:	"quay.io/cumulus"	"quay.io/cumulus
docker_regio	"quay.io/cumulus" for images on Red Hat reg-	quay.ro/cumaras	quay.ro/cumara
	istry;		
	• "cumulusprod" for backup images on Docker		
	Hub.		
	Tido.		
zones	Google cloud zones to consider for execution.	"us-east1-d us-west1-a us-	"us-
Zones	Google cloud zones to consider for execution.	west1-b"	central1-
		west1-b	a us-
			central1-
			b us-
			central1-
			C US-
			central1-f
			us-east1-b
			us-east1-c
			us-east1-d
			us-west1-a
			us-west1-b
			us-west1-
			c"
num_cpu	Number of CPUs per Cumulus job	32	64
memory	Memory size string	"200G"	"200G"
disk_space	Total disk space in GB	100	100
backend	Cloud infrastructure backend to use. Available options:	"gcp"	"gcp"
	• "gcp" for Google Cloud;		
	• "aws" for Amazon AWS;		
	"local" for local machine.		
	Number of accountible taken. This words only only		
preemptible	Number of preemptible tries. This works only when backend is gcp.	2	2
aweOnana A	n The AWS ARN string of the job queue to be used. This	"arn:aws:batch:us-east-	6677
awsQueucAl	only works for aws backend.	1:xxx:job-queue/priority-	
	only works for aws backeria.	gwf'	
		gw1	

aggregate_matrices

aggregate_matrices inputs

Name	Description	Example	Default
restrictions	Select channels that satisfy all restrictions. Each restric-	"Source:bone_marrow;Plat	orm:NextSeq"
	tion takes the format of name:value,,value. Multiple		
	restrictions are separated by ';'		
attributes	Specify a comma-separated list of outputted attributes.	"Source,Platform,Donor"	
	These attributes should be column names in the		
	count_matrix.csv file		
select_only_	singlets have demultiplexed data, turning on this option	true	false
	will make cumulus only include barcodes that are pre-		
	dicted as singlets.		S
remap_single	ets	"Group1:CB1,CB2;Group2	CB3,CB4,CB5
	For demultiplexed data, user can remap singlet names		
	using assignment in String in this input. This string		
	assignment takes the format		
	"new_name_i:old_name_1,old_name_2;new_name_ii:old_	d_name_3;".	
	For example, if we hashed 5 libraries from 3 samples:		
	sample1_lib1, sample1_lib2; sample2_lib1,		
	sample2_lib2; sample3, we can remap them to 3		
	samples using this string:		
	"sample1:sample1_lib1,sample1_lib2;		
	sample2:sample2_lib1,sample2_lib2".		
	In this way, the new singlet names will be in metadata		
	field with key assignment, while the old names are		
	kept in metadata with key assignment.orig.		
	Notice: This input is enabled only when		
	select_only_singlets input is true.		
subset_single	ets	"Group2,CB6,CB7"	
	For demultiplexed data, user can use this input to		
	choose a subset of singlets based on their names. This		
	string takes the format "name1,name2,".		
	Note that if <i>remap_singlets</i> input is specified,		
	subsetting happens after remapping, i.e. you should use		
	the new singlet names for choosing subset.		
	Notice: This input is enabled only when		
	*		
	select_only_singlets input is true.		
minimum n	un One buy of egenter codes with at least this number of ex-	100	100
	pressed genes		
is_dropseq	If inputs are DropSeq data.	false	false
		I .	1

aggregate_matrices output

output aggr zarr File Aggregated count matrix in Zarr format	Name	Туре	Description
Tiggiogated count matrix in Zan Tornia		File	Aggregated count matrix in Zarr format

cluster

cluster inputs

Name	Description	Example	Default
focus	Focus analysis on Unimodal data with <keys>. <keys></keys></keys>	"GRCh38-rna"	
	is a comma-separated list of keys. If None, the		
	selfselected will be the focused one.		
	Focus key consists of two parts: reference genome name, and data type, connected with a hyphen marker "-".		
	Reference genome name depends on the reference you used when running Cellranger workflow. See details in reference list.		
append		"SARSCoV2-rna"	
	Append Unimodal data <key> to any <keys> in focus.</keys></key>		
	Similarly as focus keys, append key also consists of		
	two parts: reference genome name, and data type, connected with a hyphen marker "-".		
	See reference list for details.		
channel	Specify the cell barcode attribute to represent different samples.	"Donor"	
black_list	Cell barcode attributes in black list will be poped out. Format is "attr1,attr2,,attrn".	"attr1,attr2,attr3""	
min_genes_b	effore <u>ra</u> fultrdtitan matrix is input, empty barcodes will	100	100
	dominate pre-filtration statistics. To avoid this, for		
	raw data matrix, only consider barcodes with at least		
	<pre><min_genes_before_filtration> genes for pre-filtration condition.</min_genes_before_filtration></pre>		
select_only_s	singletes have demultiplexed data, turning on this option	false	false
	will make cumulus only include barcodes that are predicted as singlets		

Table 3 – continued from previous page

Name	Description	Example	Default
remap_single	ets	"Group1:CB1,CB2;Group2	CB3,CB4,CB
	For demultiplexed data, user can remap singlet names using assignment in String in this input. This string assignment takes the format		
	"new_name_i:old_name_1,old_name_2;new_name_ii:old	d_name_3;".	
	For example, if we hashed 5 libraries from 3 samples:		
	sample1_lib1, sample1_lib2; sample2_lib1,		
	sample2_lib2; sample3, we can remap them to 3		
	samples using this string:		
	"sample1:sample1_lib1,sample1_lib2;		
	<pre>sample2:sample2_lib1,sample2_lib2".</pre>		
	In this way, the new singlet names will be in metadata		
	field with key assignment, while the old names are		
	kept in metadata with key assignment.orig.		
	Notice: This input is enabled only when		
	<pre>select_only_singlets input is true.</pre>		
subset_single	ots	"Group2,CB6,CB7"	
	For demultiplexed data, user can use this input to		
	choose a subset of singlets based on their names. This		
	string takes the format "name1,name2,".		
	Note that if <i>remap_singlets</i> is specified, subsetting		
	happens after remapping, i.e. you should use the new		
	singlet names for choosing subset.		
	Notice: This input is enabled only when		
	<pre>select_only_singlets input is true.</pre>		
output_filtrat	iolf_westeltsell and gene filtration results to a spreadsheet	true	true
plot_filtration	_Ife publis filtration results as PDF files	true	true
plot_filtration	Figsize size for filtration plots. < figsize is a comma-	6,4	
	separated list of two numbers, the width and height of		
	the figure (e.g. 6,4)		
output_h5ad		true	true
	if performing DE analysis, cell type annotation, or plot-		
	ting.		
output_loom	<u> </u>	false	false
min_genes	Only keep cells with at least <min_genes> of genes</min_genes>	500	500
max_genes	Only keep cells with less than <max_genes> of genes</max_genes>	6000	6000
min_umis	Only keep cells with at least <min_umis> of UMIs. By</min_umis>	100	
	default, don't filter cells due to UMI lower bound.		
max_umis	Only keep cells with less than <max_umis> of UMIs. By default, don't filter cells due to UMI upper bound.</max_umis>	600000	

Table 3 – continued from previous page

Name	Description	Example	Default
mito_prefix	Prefix of mitochondrial gene names. This is to identify	"mt-"	
	mitochondrial genes.		"MT-" for
			GRCh38
			reference
			genome
			data;
			"mt-" for
			mm10
			reference
			genome
			data;
			for other
			reference
			genome
			data, must
			specify this
			prefix manually.
			manuany.
percent_mito	Only keep cells with mitochondrial ratio less than <per-< td=""><td>50</td><td>20.0</td></per-<>	50	20.0
	cent_mito>% of total counts		
gene_percent	Only use genes that are expressed in at	50	0.05
	<pre><gene_percent_cells>% of cells to select variable</gene_percent_cells></pre>		
	genes		
counts_per_c	elloadlerounts per cell after normalization, before trans-	1e5	1e5
1	forming the count matrix into Log space.	··	· · · · · · · · · · · · · · · · · · ·
select_nvi_li	• "pegasus": New selection method proposed in	"pegasus"	"pegasus"
	Pegasus, the analysis module of Cumulus work-		
	flow.		
	"Seurat": Conventional selection method used by		
	Seurat and SCANPY.		
select_hvf_n	geshekect top <select_hvf_ngenes> highly variable fea-</select_hvf_ngenes>	2000	2000
	tures. If <select_hvf_flavor> is "Seurat" and <se-< td=""><td></td><td></td></se-<></select_hvf_flavor>		
	lect_hvf_ngenes> is "None", select HVGs with z-score		
ma salaat by	cutoff at 0.5. f Do not select highly variable features.	false	false
plot_hvf	Plot highly variable feature selection. Will not work if	false	false
Prot_nvi	no_select_hvf is true.	Talse	Taise
correct_batch	_Hfftwarect batch effects	false	false
	er of the correction method. Options:	"harmony"	"harmony"
	• "harmony": Harmony algorithm (Korsunsky et al.		
	Nature Methods 2019).		
	• "L/S": Location/Scale adjustment algorithm (Li		
	and Wong. The analysis of Gene Expression		
	Data, 2003).		
	• "scanorama": Scanorama algorithm (Hie et al.		
	and the second s		
	Nature Biotechnology 2019).		

Table 3 – continued from previous page

	Table 3 – continued from previou	. •	
Name	Description	Example	Default
batch_group		"Donor"	None
	Batch correction assumes the differences in gene		
	expression between channels are due to batch effects.		
	However, in many cases, we know that channels can be		
	partitioned into several groups and each group is		
	biologically different from others.		
	In this case, we will only perform batch correction for		
	channels within each group. This option defines the		
	groups.		
	If <expression> is None, we assume all channels are</expression>		
	from one group. Otherwise, groups are defined		
	according to <expression>.</expression>		
	<pre><expression> takes the form of either 'attr', or</expression></pre>		
	'attr1+attr2++attrn', or		
	'attr=value11,,value1n_1;value21,,value2n_2;;v	aluem1valuemn m'.	
	In the first form, 'attr' should be an existing sample	, , 	
	attribute, and groups are defined by 'attr'.		
	In the second form, 'attr1',,'attrn' are n existing		
	sample attributes and groups are defined by the		
	Cartesian product of these n attributes.		
	In the last form, there will be m + 1 groups.		
	A cell belongs to group i (i > 0) if and only if its sample		
	attribute 'attr' has a value among valuei1,,valuein_i.		
	A cell belongs to group 0 if it does not belong to any		
	other groups		
random state	Random number generator seed	0	0
	e Generator seed	"cell_cycle_human"	
cure_signatur	of the following forms:	con_cycle_naman	
	• String chosen from: cell_cycle_human,		
	cell_cycle_mouse,		
	gender_human, gender_mouse,		
	mitochondrial_genes_human,		
	mitochondrial_genes_mouse,		
	robosomal_genes_human,		
	robosomal_genes_mouse,		
	apoptosis_human, and		
	apoptosis_mouse.		
	Google bucket URL of a GMT for-		
	mat file. For example: gs://		
	fc-e0000000-0000-0000-0000-0000000	00000/	
	cell_cycle_sig.gmt.		
P.C.	N 1 C : 1	70	70
nPC	Number of principal components	50	50
knn_K	Number of nearest neighbors used for constructing	50	100
	affinity matrix.		

Table 3 – continued from previous page

	Table 3 – continued from previou		,
Name	Description	Example	Default
knn_full_spe	ecFor the sake of reproducibility, we only run one thread	false	false
	for building kNN indices. Turn on this option will allow		
	multiple threads to be used for index building. How-		
	ever, it will also reduce reproducibility due to the racing		
	between multiple threads.		
run_diffmap	Whether to calculate diffusion map or not. It will	false	false
	be automatically set to true when input run_fle or		
	run_net_fle is set.		
diffmap_ndc	Number of diffusion components	100	100
diffmap_max	t Maximum time stamp in diffusion map computation to	5000	5000
	search for the knee point.		
run_louvain	Run Louvain clustering algorithm	true	true
	uResolution parameter for the Louvain clustering algo-	1.3	1.3
	rithm		
louvain class	_Labuevain cluster label name in analysis result.	"louvain_labels"	"louvain_labels"
run_leiden	Run Leiden clustering algorithm.	false	false
	ti Re solution parameter for the Leiden clustering algo-	1.3	1.3
	rithm.		
leiden_niter	Number of iterations of running the Leiden algorithm. If	2	-1
	negative, run Leiden iteratively until no improvement.		
leiden class	labeiden cluster label name in analysis result.	"leiden_labels"	"leiden_labels"
	loRuvaiSipectral Louvain clustering algorithm	false	false
-	a Rasissed for KMeans clustering. Use diffusion map	"diffmap"	"diffmap"
speedad_red	by default. If diffusion map is not calculated, use PCA	umap	СПППП
	coordinates. Users can also specify "pca" to directly use		
	PCA coordinates.		
spectral lous	aResessoliutioparameter for louvain.	1.3	1.3
	aspedusi label name in analysis result.	"spectral_louvain_labels"	"spectral_louvain_labels"
	leRdenSpectral Leiden clustering algorithm.	false	false
	en <u>B</u> bsisisused for KMeans clustering. Use diffusion map	"diffmap"	"diffmap"
spectrar_rela	by default. If diffusion map is not calculated, use PCA	интпар	анттар
	coordinates. Users can also specify "pca" to directly use		
	PCA coordinates.		
spectral leid	en <u>Ressolutioon</u> parameter for leiden.	1.3	1.3
	er Speassallaba elen label name in analysis result.	"spectral_leiden_labels"	"spectral_leiden_labels"
run_tsne	Run FIt-SNE for visualization.	false	false
	ty-SNE's perplexity parameter.	30	30
	at loit ialization method for FIt-SNE. It can be either: 'ran-	"pca"	
tsne_muanz		pca	"pca"
	dom' refers to random initialization; 'pca' refers to PCA		
	initialization as described in [Kobak et al. 2019].	1	
run_umap	Run UMAP for visualization	true	true
umap_K	K neighbors for UMAP.	15	15
	isUMAP parameter.	0.5	0.5
umap_spread		1.0	1.0
run_fle	Run force-directed layout embedding (FLE) for visualization	false	false
fle_K	Number of neighbors for building graph for FLE	50	50
fle_target_ch	antgergper hande per node to stop FLE.	2.0	2.0
	pMaximum number of iterations before stopping the al-	5000	5000
_	goritm		

Table 3 – continued from previous page

net_down_samplewfraction for net-related visualization	Name	Description Provide	Example	Default
net_umap_out_Bussisname for Net UMAP coordinates in analysis result run_net_fle Run Net FLE for visualization false false net_fle_out_bassis name for Net FLE coordinates in analysis result. infer_doublets Infer doublets using the Pegasus method. When finished, Scrublet-like doublet scores are in cell attribute doublet_score, and "doublet/singlet" assignment on cells are stored in cell attribute demux_type. expected_doublet_groupe. and "doublet/singlet" assignment on cells are stored in cell attribute demux_type. doublet_groupe. doublet_groupe.	net_down_sa	mplevfraation for net-related visualization	0.1	0.1
run_net_fle Run Net FLE for visualization net_fle_out_balksis name for Net FLE coordinates in analysis result. infer_doublets Infer doublets using the Pegasus method. When finished, Scrublet-like doublet scores are in cell attribute doublet_score, and "doublet/singlet" assignment on cells are stored in cell attribute demux_type. expected_doubline_matpected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, calculate a distinct UMAP embedding based on their anti-	run_net_uma	pRun Net UMAP for visualization	false	false
net_fle_out_balsiss is name for Net FLE coordinates in analysis result. infer_doublets Infer doublets using the Pegasus method. When finished, Scrublet-like doublet scores are in cell attribute doublet_score, and "doublet/singlet" assignment on cells are stored in cell attribute demux_type. expected_doublet_extpected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-	net_umap_ou	tt Bassis name for Net UMAP coordinates in analysis result	"net_umap"	"net_umap"
infer_doublets Infer doublets using the Pegasus method. When finished, Scrublet-like doublet scores are in cell attribute doublet_score, and "doublet/singlet" assignment on cells are stored in cell attribute demux_type. expected_doubldte_interpected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-	run_net_fle	Run Net FLE for visualization	false	false
ished, Scrublet-like doublet scores are in cell attribute doublet_score, and "doublet/singlet" assignment on cells are stored in cell attribute demux_type. expected_doublet_expected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, calculate a distinct UMAP embedding based on their anti-	net_fle_out_b	pa Eia sis name for Net FLE coordinates in analysis result.	"net_fle"	"net_fle"
doublet_score, and "doublet/singlet" assignment on cells are stored in cell attribute demux_type. expected_doubldte_expected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, calculate a distinct UMAP embedding based on their anti-	infer_doublet	sInfer doublets using the Pegasus method. When fin-	false	false
on cells are stored in cell attribute demux_type. expected_doublite expected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, calculate a distinct UMAP embedding based on their anti-		ished, Scrublet-like doublet scores are in cell attribute		
expected_doublite_extpected doublet rate per sample. If not specified, calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, calculate a distinct UMAP embedding based on their anti-		doublet_score, and "doublet/singlet" assignment		
calculate the expected rate based on number of cells from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT—" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, cal- citeseq_umap For high quality cells kept in the RNA modality, cal- culate a distinct UMAP embedding based on their anti-		on cells are stored in cell attribute demux_type.		
from the 10x multiplet rate table. doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, cal- culate a distinct UMAP embedding based on their anti-	expected_doi		0.05	
doublet_cluster_attribute Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, cal- culate a distinct UMAP embedding based on their anti-				
Specify which cluster attribute (e.g. "louvain_labels") should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality, calculate a distinct UMAP embedding based on their anti-		from the 10x multiplet rate table.		
should be used for doublet inference. Then doublet clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-	doublet_clust	er_attribute	"louvain_labels"	
clusters will be marked with the following criteria: passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, cal- culate a distinct UMAP embedding based on their anti-				
passing the Fisher's exact test and having >= 50% of cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-				
cells identified as doublets. If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-				
If not specified, the first computed cluster attribute in the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-				
the list of "leiden", "louvain", "spectral_ledein" and "spectral_louvain" will be used. citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-		cells identified as doublets.		
citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set focus to be the RNA modality and append to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-		If not specified, the first computed cluster attribute in		
citeseq Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set <i>focus</i> to be the RNA modality and <i>append</i> to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-		the list of "leiden", "louvain", "spectral_ledein" and		
Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set <i>focus</i> to be the RNA modality and <i>append</i> to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-		"spectral_louvain" will be used.		
Perform CITE-Seq data analysis. Set to true if input data contain both RNA and CITE-Seq modalities. This will set <i>focus</i> to be the RNA modality and <i>append</i> to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-				
data contain both RNA and CITE-Seq modalities. This will set <i>focus</i> to be the RNA modality and <i>append</i> to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-	citeseq		false	false
This will set <i>focus</i> to be the RNA modality and <i>append</i> to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-		Perform CITE-Seq data analysis. Set to true if input		
to be the CITE-Seq modality. In addition, "ADT-" will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, cal- culate a distinct UMAP embedding based on their anti-		data contain both RNA and CITE-Seq modalities.		
will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-		This will set <i>focus</i> to be the RNA modality and <i>append</i>		
will be added in front of each antibody name to avoid name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-		• 11		
name conflict with genes in the RNA modality. citeseq_umap For high quality cells kept in the RNA modality, calculate a distinct UMAP embedding based on their anti-				
citeseq_umap For high quality cells kept in the RNA modality, cal- culate a distinct UMAP embedding based on their anti-				
culate a distinct UMAP embedding based on their anti-		,		
culate a distinct UMAP embedding based on their anti-	citeseq_umar	For high quality cells kept in the RNA modality, cal-	false	false
body expression.		body expression.		
citeseq_umap_Axchandena-separated list of antibodies to be excluded "Mouse-IgG1,Mouse-	citeseq_umar		"Mouse-IgG1,Mouse-	
from the CITE-Seq UMAP calculation (e.g. Mouse- IgG2a"				
IgG1,Mouse-IgG2a).		IgG1,Mouse-IgG2a).		

cluster outputs

Name	Туре	Description
output_zarr	File	
		Output file in zarr format (output_name.zarr.zip).
		To load this file in Python, you need to first install PegasusIO on your local
		machine. Then use import pegasusio as io; data =
		<pre>io.read_input('output_name.zarr.zip') in Python environment.</pre>
		data is a MultimodalData object, and points to its default UnimodalData
		element. You can set its default UnimodalData to others by
		data.set_data(focus_key) where focus_key is the key string to the wanted <i>UnimodalData</i> element.
		For its default <i>UnimodalData</i> element, the log-normalized expression matrix is stored in data. X as a Scipy CSR-format sparse matrix, with cell-by-gene shape.
		Alternatively, to get the raw count matrix, first run
		data.select_matrix('raw.X'), then data.X will be switched to point to the raw matrix.
		The obs field contains cell related attributes, including clustering results.
		For example, data.obs_names records cell barcodes; data.obs['Channel'] records the channel each cell comes from;
		data.obs['n_genes'], data.obs['n_counts'], and
		data.obs['percent_mito'] record the number of expressed genes, total UMI count, and mitochondrial rate for each cell respectively;
		data.obs['louvain_labels'],
		data.obs['leiden_labels'],
		data.obs['spectral_louvain_labels'], and
		data.obs['spectral_leiden_labels'] record each cell's cluster labels using different clustering algorithms;
		The var field contains gene related attributes.
		For example, data.var_names records gene symbols,
		data.var['gene_ids'] records Ensembl gene IDs, and data.var['highly_variable_features'] records selected variable genes.
		The obsm field records embedding coordinates.
		For example, data.obsm['X_pca'] records PCA coordinates,
		data.obsm['X_tsne'] records t-SNE coordinates,
		data.obsm['X_umap'] records UMAP coordinates,
		data.obsm['X_diffmap'] records diffusion map coordinates,
		and data.obsm['X_fle'] records the force-directed layout coordinates.
		The uns field stores other related information, such as reference genome
		(data.uns['genome']), kNN on PCA coordinates (data.uns['pca_knn_indices'] and
		data.uns['pca_knn_distances']), etc.
output_log	File	This is a copy of the logging module output, containing important intermediate messages
output_h5ad	Array[File]	
		List of output file(s) in Seurat-compatible h5ad format
1.1. 2.3.0 Octob	er 30, 2022	(output_name.focus_key.h5ad), in which each file is associated with a
		focus of the input data.
		To load this file in Python, first install PegasusIO on your local machine. Then use import pegasusio as io; data =

de_analysis

de_analysis inputs

Name	Description	Example	Default
perform_de_	ar Mysther perform differential expression (DE) analysis.	true	true
	If performing, by default calculate AUROC scores and		
	Mann-Whitney U test.		
cluster_label	s Specify the cluster label used for DE analysis	"louvain_labels"	"louvain_labels"
alpha	Control false discovery rate at <alpha></alpha>	0.05	0.05
fisher	Calculate Fisher's exact test	false	false
t_test	Calculate Welch's t-test.	false	false
find_markers	Lightschotetect markers using LightGBM	false	false
remove_ribo	Remove ribosomal genes with either RPL or RPS as	false	false
	prefixes. Currently only works for human data		
min_gain	Only report genes with a feature importance score (in	1.0	1.0
	gain) of at least <gain></gain>		
annotate_cluster also annotate cell types for clusters based on DE re-		false	false
	sults		
annotate_de_	testifferential Expression test to use for inference on cell	"mwu"	"mwu"
	types. Options: mwu, t, or fisher		
organism	Organism, could either of the follow:	"mouse_immune,mouse_br	ลiที่หืนman_immune
	• Preset markers: human_immune,		
	mouse_immune, human_brain,		
	mouse_brain, human_lung, or a com-		
	bination of them as a string separated by comma.		
	 User-defined marker file: A Google bucket link to 		
	a user-specified JSON file describing the mark-		
	ers. For example: gs://fc-e0000000/		
	my_markers.json.		
minimum_re	polylinsimmen cell type score to report a potential cell type	0.5	0.5

de_analysis outputs

Name	Туре	Description
output_de_h5ad	Array[File]	
		List of h5ad-formatted results with DE results updated (output_name.focus_key.h5ad), in which each file is associated with a focus of the input data. To load this file in Python, you need to first install PegasusIO on your local machine. Then type import pegasusio as io; data = io.read_input('output_name.focus_key.h5ad') in Python environment. After loading, data has the similar structure as *UnimodalData* object in Description of *output_zarr* in cluster outputs section. Besides, there is one additional field varm which records DE analysis results in data.varm['de_res']. You can use Pandas DataFrame to convert it into a reader-friendly structure: import pandas as pd; df = pd.DataFrame(data.varm['de_res'], index=data.var_names). Then in the resulting data frame, genes are rows, and those DE test statistics are columns. DE analysis in cumulus is performed on each cluster against cells in all the other clusters. For instance, in the data frame, column 1:log2Mean refers to the mean expression of genes in log-scale for cells in Cluster 1. The number before colon refers to the cluster label to which this statistic belongs.
output_de_xlsx	Array[File]	
		List of spreadsheets reporting DE results (output_name.focus_key.de.xlsx), in which each file is associated with a focus of the input data. Each cluster has two tabs: one for up-regulated genes for this cluster, one for down-regulated ones. In each tab, genes are ranked by AUROC scores. Genes which are not significant in terms of q-values in any of the DE test are not included (at false discovery rate specified in alpha field of de_analysis inputs).
output_markers_x		List of Excel spreadsheets containing detected markers (out-put_name.focus_key.markers.xlsx), in which each file is associated with a focus of the input data. Each cluster has one tab in the spreadsheet and each tab has three columns, listing markers that are strongly up-regulated, weakly up-regulated and down-regulated.
output_anno_file	Array[File]	List of cluster-based cell type annotation files (out-put_name.focus_key.anno.txt), in which each file is associated with a focus of the input data.

How cell type annotation works

In this subsection, we will describe the format of input JSON cell type marker file, the *ad hoc* cell type inference algorithm, and the format of the output putative cell type file.

JSON file

The top level of the JSON file is an object with two name/value pairs:

- title: A string to describe what this JSON file is for (e.g. "Mouse brain cell markers").
- **cell_types**: List of all cell types this JSON file defines. In this list, each cell type is described using a separate object with 2 to 3 name/value pairs:
 - name: Cell type name (e.g. "GABAergic neuron").
 - markers: List of gene-marker describing objects, each of which has 2 name/value pairs:
 - * **genes**: List of positive and negative gene markers (e.g. ["Rbfox3+", "Flt1-"]).
 - * weight: A real number between 0.0 and 1.0 to describe how much we trust the markers in genes.

All markers in **genes** share the weight evenly. For instance, if we have 4 markers and the weight is 0.1, each marker has a weight of 0.1 / 4 = 0.025.

The weights from all gene-marker describing objects of the same cell type should sum up to 1.0.

 subtypes: Description on cell subtypes for the cell type. It has the same structure as the top level JSON object.

See below for an example JSON snippet:

```
"title" : "Mouse brain cell markers",
  "cell_types" : [
      "name" : "Glutamatergic neuron",
      "markers" : [
          "genes": ["Rbfox3+", "Reln+", "Slc17a6+", "Slc17a7+"],
          "weight" : 1.0
        }
      "subtypes" : {
        "title" : "Glutamatergic neuron subtype markers",
          "cell_types" : [
              "name" : "Glutamatergic layer 4",
              "markers" : [
                  "genes" : ["Rorb+", "Pagr8+"],
                  "weight" : 1.0
                }
              ]
            }
     }
 ]
```

Inference Algorithm

We have already calculated the up-regulated and down-regulated genes for each cluster in the differential expression analysis step.

First, load gene markers for each cell type from the JSON file specified, and exclude marker genes, along with their associated weights, that are not expressed in the data.

Then scan each cluster to determine its putative cell types. For each cluster and putative cell type, we calculate a score between 0 and 1, which describes how likely cells from the cluster are of this cell type. The higher the score is, the more likely cells are from the cell type.

To calculate the score, each marker is initialized with a maximum impact value (which is 2). Then do case analysis as follows:

- For a positive marker:
 - If it is not up-regulated, its impact value is set to 0.
 - Otherwise, if it is up-regulated:
 - * If it additionally has a fold change in percentage of cells expressing this marker (within cluster vs. out of cluster) no less than 1.5, it has an impact value of 2 and is recorded as a **strong supporting marker**.
 - * If its fold change (fc) is less than 1.5, this marker has an impact value of 1 + (fc 1) / 0.5 and is recorded as a **weak supporting marker**.
- For a negative marker:
 - If it is up-regulated, its impact value is set to 0.
 - If it is neither up-regulated nor down-regulated, its impact value is set to 1.
 - Otherwise, if it is down-regulated:
 - * If it additionally has 1 / fc (where fc is its fold change) no less than 1.5, it has an impact value of 2 and is recorded as a **strong supporting marker**.
 - * If 1 / fc is less than 1.5, it has an impact value of 1 + (1 / fc 1) / 0.5 and is recorded as a **weak supporting marker**.

The score is calculated as the weighted sum of impact values weighted over the sum of weights multiplied by 2 from all expressed markers. If the score is larger than 0.5 and the cell type has cell subtypes, each cell subtype will also be evaluated.

Output annotation file

For each cluster, putative cell types with scores larger than minimum_report_score will be reported in descending order with respect to their scores. The report of each putative cell type contains the following fields:

- name: Cell type name.
- score: Score of cell type.
- average marker percentage: Average percentage of cells expressing marker within the cluster between all positive supporting markers.
- **strong support**: List of strong supporting markers. Each marker is represented by a tuple of its name and percentage of cells expressing it within the cluster.
- weak support: List of week supporting markers. It has the same structure as strong support.

plot

The h5ad file contains a default cell attribute Channel, which records which channel each that single cell comes from. If the input is a CSV format sample sheet, Channel attribute matches the Sample column in the sample sheet. Otherwise, it's specified in channel field of the cluster inputs.

Other cell attributes used in plot must be added via attributes field in the aggregate_matrices inputs.

plot inputs

Name	Description	Example	Default
plot_compos	ition	"louvain_labels:Donor"	None
	Takes the format of "label:attr,label:attr,,label:attr". If non-empty, generate composition plot for each "label:attr" pair. "label" refers to cluster labels and "attr" refers to sample conditions		
plot_tsne		"louvain_labels,Donor"	None
	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FIt-SNEs side by side		
plot_umap	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored UMAP side by side	"louvain_labels,Donor"	None
plot_fle	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FLE (force-directed layout embedding) side by side	"louvain_labels,Donor"	None
plot_net_uma	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored UMAP side by side based on net UMAP result.	"leiden_labels,Donor"	None
plot_net_fle	Takes the format of "attr,attr,,attr". If non-empty, plot attr colored FLE (force-directed layout embedding) side by side based on net FLE result.	"leiden_labels,Donor"	None
plot_citeseq_	umap Takes the format of "attr,attr,,attr". If non-empty, plot attr colored UMAP side by side based on CITE-Seq UMAP result.	"louvain_labels,Donor"	None

plot outputs

Name	Туре	Description
output_pdfs	Array[File]	Outputted pdf files
output_htmls	Array[File]	Outputted html files

Generate input files for Cirrocumulus

Generate Cirrocumulus inputs for visualization using Cirrocumulus .

cirro_output inputs

Name	Description	Example	Default
generate_ciri	o Withputher to generate input files for Cirrocumulus	false	false

cirro_output outputs

Name	Туре		Description
output_cirro_path	Google	Bucket	Path to Cirrocumulus inputs
	URL		

Generate SCP-compatible output files

Generate analysis result in Single Cell Portal (SCP) compatible format.

scp_output inputs

Name	Description	Example	Default
generate_scp	_dWtputher to generate SCP format output or not.	false	false
output_dense	Output dense expression matrix, instead of the default	false	false
	sparse matrix format.		

scp_output outputs

Name	Туре	Description
output_scp_files	Array[File]	Outputted SCP format files.

Run CITE-Seq analysis

Users now can use *cumulus/cumulus* workflow solely to run CITE-Seq analysis.

1. Prepare a sample sheet in the following format:

```
Sample, Location, Modality sample_1, gs://your-bucket/rna_raw_counts.h5, rna sample_1, gs://your-bucket/citeseq_cell_barcodes.csv, citeseq
```

Each row stands for one modality:

- Sample: Sample name, which must be the same in the two rows to let Cumulus aggregate RNA and CITE-Seq matrices.
- Location: Google bucket URL of the corresponding count matrix file.
- Modality: Modality type. rna for RNA count matrix; citeseq for CITE-Seq antibody count matrix.
- 2. Run cumulus/cumulus workflow using this sample sheet as the input file, and specify the following input fields:
 - citeseq: Set this to true to enable CITE-Seq analysis.
 - citeseq_umap: Set this to true to calculate the CITE-Seq UMAP embedding on cells.
 - **citeseq_umap_exclude**: A list of CITE-Seq antibodies to be excluded from UMAP calculation. This list should be written in a string format with each antibody name separated by comma.
 - plot_citeseq_umap: A list of cell barcode attributes to be plotted based on CITE-Seq UMAP embedding.
 This list should be written in a string format with each attribute separated by comma.

Load Cumulus results into Pegasus

Pegasus is a Python package for large-scale single-cell/single-nucleus data analysis, and it uses PegasusIO for read/write. To load Cumulus results into Pegasus, we provide instructions based on file format:

• zarr: Annotated Zarr file in zip format. This is the standard output format of Cumulus. You can load it by:

```
import pegasusio as io
data = io.read_input("output_name.zarr.zip")
```

• h5ad: When setting "output_h5ad" field in *Cumulus cluster* to *true*, a list of annotated H5AD file(s) will be generated besides Zarr result. If the input data have multiple foci, Cumulus will generate one H5AD file per focus. You can load it by:

```
import pegasusio as io
adata = io.read_input("output_name.focus_key.h5ad")
```

Sometimes you may also want to specify how the result is loaded into memory. In this case, read_input has argument mode. Please see its documentation for details.

• **loom**: When setting "output_loom" field in *Cumulus cluster* to **true**, a list of loom format file(s) will be generated besides Zarr result. Similarly as H5AD output, Cumulus generates multiple loom files if the input data have more than one foci. To load loom file, you can optionally set its genome name in the following way as this information is not contained by loom file:

```
import pegasusio as io
data = pg.read_input("output_name.focus_key.loom", genome = "GRCh38")
```

After loading, Pegasus manipulate the data matrix in PegasusIO MultimodalData structure.

Load Cumulus results into Seurat

Seurat is a single-cell data analysis package written in R.

Load H5AD File into Seurat

First, you need to set "output_h5ad" field to true in cumulus cluster inputs to generate Seurat-compatible output files output_name.focus_key.h5ad, in addition to the standard result output_name.zarr.zip. If the input data have multiple foci, Cumulus will generate one H5AD file per focus.

Notice that Python, and Python package annual with version at least 0.6.22.post1, and R package reticulate are required to load the result into Seurat.

Execute the R code below to load the h5ad result into Seurat (working with both Seurat v2 and v3):

The resulting Seurat object result has three data slots:

- raw.data records filtered raw count matrix.
- data records filtered and log-normalized expression matrix.
- scale.data records variable-gene-selected, standardized expression matrix that are ready to perform PCA.

Load Ioom File into Seurat

First, you need to set "output_loom" field to true in cumulus cluster inputs to generate a loom format output file, say output_name.focus_key.loom, in addition to the standard result output_name.zarr.zip. If the input data have multiple foci, Cumulus will generate one loom file per focus.

You also need to install *loomR* package in your R environment:

```
install.package("devtools")
devtools::install_github("mojaveazure/loomR", ref = "develop")
```

Execute the R code below to load the loom file result into Seurat (working with Seurat v3 only):

In addition, if you want to set an active cluster label field for the resulting Seurat object, do the following:

```
Idents(result) <- result@meta.data$louvain_labels</pre>
```

where louvain_labels is the key to the Louvain clustering result in Cumulus, which is stored in cell attributes result@meta.data.

Load Cumulus results into SCANPY

SCANPY is another Python package for single-cell data analysis. We provide instructions on loading Cumulus output into SCANPY based on file format:

• h5ad: Annotated H5AD file. This is the standard output format of Cumulus:

```
import scanpy as sc
adata = sc.read_h5ad("output_name.h5ad")
```

Sometimes you may also want to specify how the result is loaded into memory. In this case, read_h5ad has argument backed. Please see SCANPY documentation for details.

• loom: This format is generated when setting "output_loom" field in Cumulus cluster to true:

```
import scanpy as sc
adata = sc.read_loom("output_name.loom")
```

Besides, read_loom has a boolean sparse argument to decide whether to read the data matrix as sparse, with default value True. If you want to load it as a dense matrix, simply type:

```
adata = sc.read_loom("output_name.loom", sparse = False)
```

After loading, SCANPY manipulates the data matrix in anndata structure.

Visualize Cumulus results in Python

Ensure you have Pegasus installed.

Download your analysis result data, say output_name.zarr.zip, from Google bucket to your local machine.

Follow Pegasus plotting tutorial for visualizing your data in Python.

1.1.10 Run Terra pipelines via command line

You can run Terra pipelines via the command line by installing the Altocumulus package (version 2.0.0 or later is required).

Install Altocumulus

1. Make sure you have conda installed. If you haven't installed conda, use the following commands to install it on Linux:

```
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh . bash Miniconda3-latest-Linux-x86_64.sh -p /home/foo/miniconda3 mv Miniconda3-latest-Linux-x86_64.sh /home/foo/miniconda3
```

where /home/foo/miniconda3 should be replaced by your own folder holding Miniconda3.

Or use the following commdands for MacOS installation:

1. Create a conda environment named "alto" and install Altocumulus:

```
conda create -n alto -y pip
source activate alto
pip install altocumulus
```

When the installation is done, type alto -h in terminal to see if you can see the help information.

Set up Google Cloud Account

Install gcloud CLI on your local machine.

Then type the following command in your terminal

```
gcloud auth application-default login
```

and follow the pop-up instructions to set up your Google cloud account.

Run workflows on Terra

alto terra run submits workflows to Terra for execution. Features:

• Uploads local files/directories in your inputs to a Google Cloud bucket updates the file paths to point to the Google Cloud bucket.

Your sample sheet can point to local file paths. In this case, alto terra run will take care of uploading directories smartly (e.g. only upload necessary files in BCL folders) and modifying the sample sheet to point to a Google Cloud bucket.

- Creates or uses an existing workspace.
- Uses the latest version of a method unless the method version is specified.

Options

Required options are in bold.

Name	Description
-m <method> -method <method></method></method>	Specify a Terra workflow <i><method></method></i> to use. <i><method></method></i> is of format <i>Namespace/Name</i> (e.g. cumulus/cellranger_workflow). Workflow name. The workflow can come from either Dockstore or Broad Methods Repository. If it comes from Dockstore, specify the name as organization:collection:name:version (e.g. broadinstitute:cumulus:1.5.0) and the default version would be used if version is omitted. If it comes from Broad Methods Repository, specify the name as namespace/name/version (e.g. cumulus/cumulus/43) and the latest snapshot would be used if version is omitted.
-w <workspace> -workspace <workspace></workspace></workspace>	Specify which Terra workspace < WORKSPACE > to use. < WORKSPACE > is also of format Namespace/Name (e.g. foo/bar). The workspace will be created if it does not exist.
-i <wdl_inputs> -inputs <wdl_inputs></wdl_inputs></wdl_inputs>	Specify the WDL input JSON file to use. It can be a local file, a JSON string, or a Google bucket URL directing to a remote JSON file.
-bucket-folder <folder></folder>	Store inputs to <folder> under workspace's google bucket.</folder>
-o <updated_json> -upload <updated_json></updated_json></updated_json>	Upload files/directories to Google bucket of the workspace, and generate an updated input JSON file (with local paths replaced by Google bucket URLs) to <updated_json> on local machine.</updated_json>
-no-cache	Disable Terra cache calling

Example run on Terra

This example shows how to use alto terra run to run cellranger_workflow to extract gene-count matrices from sequencing output.

1. Prepare your sample sheet example_sample_sheet.csv as the following:

```
Sample, Reference, Flowcell, Lane, Index, Chemistry sample_1, GRCh38, /my-local-path/flowcell1, 1-2, SI-GA-A8, threeprime sample_2, GRCh38, /my-local-path/flowcell1, 3-4, SI-GA-B8, threeprime sample_3, mm10, /my-local-path/flowcell1, 5-6, SI-GA-C8, fiveprime
```

(continues on next page)

(continued from previous page)

```
sample_4,mm10,/my-local-path/flowcell1,7-8,SI-GA-D8,fiveprime
sample_1,GRCh38,/my-local-path/flowcell2,1-2,SI-GA-A8,threeprime
sample_2,GRCh38,/my-local-path/flowcell2,3-4,SI-GA-B8,threeprime
sample_3,mm10,/my-local-path/flowcell2,5-6,SI-GA-C8,fiveprime
sample_4,mm10,/my-local-path/flowcell2,7-8,SI-GA-D8,fiveprime
```

where /my-local-path is the top-level directory of your BCL files on your local machine.

Note that sample_1, sample_2, sample_3, and sample_4 are sequenced on 2 flowcells.

2. Prepare your JSON input file inputs.json for cellranger_workflow:

```
{
    "cellranger_workflow.input_csv_file" : "/my-local-path/sample_sheet.csv",
    "cellranger_workflow.output_directory" : "gs://url/outputs",
    "cellranger_workflow.delete_input_bcl_directory": true
}
```

where gs://url/outputs is the folder on Google bucket of your workspace to hold output.

3. Run the following command to kick off your Terra workflow:

```
alto terra run -m cumulus/cellranger_workflow -i inputs.json -w myworkspace_
_namespace/myworkspace_name -o inputs_updated.json
```

where myworkspace_namespace/myworkspace_name should be replaced by your workspace namespace and name.

Upon success, alto terra run returns a URL pointing to the submitted Terra job for you to monitor.

If for any reason, your job failed. You could rerun it without uploading files again via the following command:

```
alto terra run -m cumulus/cellranger_workflow -i inputs_updated.json -w myworkspace_

→namespace/myworkspace_name
```

because inputs_updated.json is the updated version of inputs.json with all local paths being replaced by their corresponding Google bucket URLs after uploading.

Run workflows on a Cromwell server

alto cromwell run submits WDL jobs to a Cromwell server for execution. Features:

- Uploads local files/directories in your inputs to an appropriate location depending on backend chosen and updates the file paths to point to the bucket information.
- Uses the method parameter to pull in appropriate worflow to import and run.

Options

Required options are in bold.

Name	Description
-s <server> -server <server></server></server>	Server hostname or IP address.
-p <port> -port <port></port></port>	Port number for Cromwell service. The default port is 8000.
-m <method_str> -method <method_str></method_str></method_str>	Workflow name from Dockstore, with name specified as organization:collection:name:version (eg. broadinstitute:cumulus:1.5.0). The default version would be used if version is omitted.
-i <input/> -input <input/>	Path to a local JSON file specifying workflow inputs.
-o <updated_json> -upload <input/></updated_json>	Upload files/directories to the workspace cloud bucket and output updated input json (with local path replaced by cloud bucket urls) to <updated_json>.</updated_json>
-b <[s3 gs]:// <bucket- name>/<bucket- folder>> -bucket <[s3 gs]://<bucket- name>/<bucket- folder>></bucket- </bucket- </bucket- </bucket- 	Cloud bucket folder for uploading local input data. Start with 's3://' if an AWS S3 bucket is used, 'gs://' for a Google bucket. Must be specified when '-o' option is used.
-no-ssl-verify	Disable SSL verification for web requests. Not recommended for general usage, but can be useful for intra-networks which don't support SSL verification.

Example import of any Cumulus workflow

This example shows how to use alto cromwell run to run demultiplexing workflow on any backend.

1. Prepare your sample sheet demux_sample_sheet.csv as the following:

```
OUTNAME, RNA, TagFile, TYPE sample_1, gs://exp/data_1/raw_feature_bc_matrix.h5, gs://exp/data_1/sample_1_ADT.

csv, cell-hashing (continues on next page)
```

(continued from previous page)

```
sample_2,gs://exp/data_2/raw_feature_bc_matrix.h5,gs://exp/data_3/possorted_

→genome_bam.bam,genetic-pooling
```

2. Prepare your JSON input file cumulus_inputs.json for cellranger_workflow:

```
"demultiplexing.input_sample_sheet" : "demux_sample_sheet.csv",
   "demultiplexing.output_directory" : "gs://url/outputs",
   "demultiplexing.zones" : "us-west1-a us-west1-b us-west1-c",
   "demultiplexing.backend" : "gcp",
   "demultiplexing.genome" : "GRCh38-2020-A"
}
```

where gs://url/outputs is the folder on Google bucket of your workspace to hold output.

3. Run the following command to kick off your run on a chosen backend:

```
alto cromwell run -s 10.10.10.10 -p 3000 -m_

→broadinstitute:cumulus:Demultiplexing:master \

-i cumulus_inputs.json
```

1.1.11 Examples

Example of Gene expression, Hashing and CITE-Seq Analysis on Cloud

In this example, you'll learn how to perform Gene expression, Hashing and CITE-Seq data analysis on Cloud.

This example covers the cases of both Terra platform and a custom cloud server running Cromwell. When reading through the tutorial, you may check out the corresponding part based on your working situation.

0. Prerequisite

0-a. Cromwell server

If you use a Cromwell server on Cloud, on your local machine, you need to install the corresponding Cloud SDK tool if not:

- gcloud CLI if your Cloud bucket is on Google Cloud.
- AWS CLI v2 if your Cloud bucket is on Amazon AWS Cloud.

And then install Altocumulus in your Python environment. This is the tool for data transfer between local machine and cloud bucket, as well as communication with the Cromwell server on cloud.

0-b. Terra Platform

If you use Terra, after registering on Terra and creating a workspace there, you'll need the following information:

• **Terra workspace name**. This is shown on your Terra workspace webpage, with format "<*workspace-namespace*>/<*workspace-name*>". For example, if your Terra workspace has full name ws-lab/ws-01, then **ws-lab** is the namespace and **ws-01** is the workspace name winthin that namespace.

• The corresponding **Google Cloud Bucket** of your Terra workspace. You can check it under "*Google Bucket*" title on the right panel of your Terra workspace's *Dashboard* tab. The bucket name associated with your workspace starts with fc-followed by a sequence of heximal numbers. For example, gs://fc-e0000000, where "gs://" is the header of GS URI.

Besides, install gcloud CLI and Altocumulus on your local machine for data uploading. These tools will be used for data transfer between local machine and Cloud bucket.

Alternatively, you can also use Terra web UI for job submission instead of command-line submission. This will be discussed in Section Run Analysis with Terra Web UI below.

1. Extract Gene-Count Matrices

This phase is to extract gene-count matrices from sequencing output.

There are two cases: (1) from BCL data, which includes *mkfastq* step to generate FASTQ files and *count* step to generate gene-count matrices; (2) from FASTQ files, which only runs the *count* step.

1-a. Extract Genen-Count Matrices from BCL data

This section covers the case starting from BCL data.

Step 1. Sample Sheet Preparation

First, prepare a feature index file for your dataset. Say its filename is antibody_index.csv, which has format "feature_barcode, feature_name, feature_type". See an example below:

```
TTCCTGCCATTACTA, HTO_1, hashing
CCGTACCTCATTGTT, HTO_2, hashing
GGTAGATGTCCTCAG, HTO_3, hashing
TGGTGTCATTCTTGA, Ab1, citeseq
CTCATTGTAACTCCT, Ab2, citeseq
GCGCAACTTGATGAT, Ab3, citeseq
......
```

where each line contains the barcode and the name of a Hashing/CITE-Seq index: hashing indicates a Cell/Nucleus-Hashing index, while citeseq indicates a CITE-Seq index.

Next, create a sample sheet cellranger_sample_sheet.csv for Cell Ranger processing on your local machine. Below is an example:

```
Sample, Reference, Flowcell, Lane, Index, Chemistry, DataType, FeatureBarcodeFile sample_control, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-TT-A1, fiveprime, rna sample_gex, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-TT-A2, fiveprime, rna sample_cell_hashing, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-NN-A1, fiveprime, hashing, /path/to/antibody_index.csv sample_cite_seq, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-NN-A2, fiveprime, citeseq, /path/to/antibody_index.csv
```

where

• GRCh38-2020-A is the is the Human GRCh38 (GENCODE v32/Ensembl 98) genome reference prebuilt by Cumulus. See Cumulus single-cell genome reference list for a complete list of genome references.

- /path/to/flowcell/folder should be replaced by the actual local path to the BCL folder of your sequencing data.
- /path/to/antibody_index.csv should be replaced by the actual local path to antibody_index. csv file we just created above.
- rna, hashing and citeseq refer to gene expression data, cell/nucleus-hashing data, and CITE-Seq data, respectively.
- Samples of type rna do not need any feature barcode file for indexing.

For the details on how to prepare this sample sheet, please refer to Step 3 of Cell Ranger sample sheet instruction.

Step 2. Workflow Input Preparation

Now prepare a JSON file for **cellranger_workflow** WDL workflow input on your local machine (say named cellranger_inputs.json):

```
{
    "cellranger_workflow.input_csv_file": "/path/to/cellranger_sample_sheet.csv",
    "cellranger_workflow.output_directory": "gs://my-bucket/cellranger_output"
}
```

where

- /path/to/cellranger_sample_sheet.csv should be replaced by the actual local path to your sample sheet created above.
- gs://my-bucket/cellranger_output is the target folder on Google bucket to store your result when the workflow job is finished, where my-bucket should be replaced by your own Google bucket name.

For details on the all the workflow inputs of cellranger_workflow, please refer to Cell Ranger workflow inputs.

Step 3. Job Submission

Now we are ready to submit a job to cloud for computing:

• If you use a Cromwell server on cloud, run the following Altocumulus command:

```
alto cromwell run -s <server-address> -p <port-number> -m_

→broadinstitute:cumulus:cellranger -i /path/to/cellranger_inputs.json -o_

→cellranger_inputs_updated.json -b gs://my-bucket/data_source
```

where

- -s specifies the server's IP address (or hostname), where <server-address> should be replaced by the actual IP address (or hostname).
- -m specifies which WDL workflow to use. You should use the Dockstore name of Cumulus cell-ranger_workflow. Here, the version is omitted, so that the default version will be used. Alternatively, you can explicitly specify which version to use, e.g. broadinstitute:cumulus:cellranger:master to use its development version in *master* branch.
- -i specifies the workflow input JSON file.
- -o and -b are used when the input data (which are specified in the workflow input JSON file and sample sheet CSV file) are local and need to be uploaded to Cloud bucket first.

- -o specifies the updated workflow input JSON file after uploading the input data, with all the local paths updated to Cloud bucket URIs. This is useful when resubmitting jobs running the same input data, without uploading the same input data again.
- -b specifies which folder on Cloud bucket to upload the local input data, where my-bucket should be replaced by your own Google bucket name. Feel free to choose the folder name other than data_source.

Notice that $-\circ$ and $-\circ$ options can be dropped if all of your input data are already on Cloud bucket.

After submission, you'll get the job's ID for tracking its status:

```
alto cromwell check_status -s <server-address> -p <port-number> --id <your-job-ID>
```

where <pour-job-ID> should be replaced by the actual Cromwell job ID.

• If you use Terra, run the following Altocumulus command:

```
alto terra run -m broadinstitute:cumulus:cellranger -w ws-lab/ws-01 --bucket-

→folder data_source -i /path/to/cellranger_inputs.json -o cellranger_inputs_

→updated.json
```

where

- -m specifies which WDL workflow to use. You should use the Dockstore name of Cumulus cell-ranger_workflow. Here, the version is omitted, so that the default version will be used. Alternatively, you can explicitly specify which version to use, e.g. broadinstitute:cumulus:cellranger:master to use its development version in *master* branch.
- -w specifies the Terra workspace full name to use, where ws-lab/ws-01 should be replaced by your own Terra workspace full name.
- --bucket-folder specifies the folder name on the Google bucket associated with the Terra workspace to store the uploaded data. Feel free to choose folder name other than data_source.
- -i specifies the workflow input JSON file, where /path/to/cellranger_inputs.json should be replaced by the actual local path to cellranger_inputs.json file.
- -o specifies the updated workflow input JSON file after uploading the input data, with all the local paths updated to Cloud bucket URIs. This is useful when resubmitting jobs running the same input data, without uploading the same input data again.

Notice that --bucket-folder and -o options can be dropped if all of your input data are already on Cloud bucket.

After submission, you can check the job's status in the Job History tab of your Terra workspace page.

When the job is done, you'll get results in gs://my-bucket/cellranger_output, which is specified in cellranger_inputs.json above. It should contain 4 subfolders, each of which is associated with one sample specified in cellranger_sample_sheet.csv above.

For the next phases, you'll need 3 files from the output:

- RNA count matrix of the sample group of interest: gs://my-bucket/cellranger_output/sample_gex/raw_feature_bc_matrix.h5;
- Cell-Hashing Antibody count matrix: gs://my-bucket/cellranger_output/sample_cell_hashing/sample_cell_hashing.csv;
- CITE-Seq Antibody count matrix: gs://my-bucket/cellranger_output/sample_cite_seq/sample_cite_seq.csv.

1-b. Extract Gene-Cound Matrices from FASTQ files

This section covers the case starting from FASTQ files.

Similarly as above, First, prepare a feature index file for your dataset. Say its filename is antibody_index.csv, which has format "feature_barcode, feature_name, feature_type". See an example below:

```
TTCCTGCCATTACTA, HTO_1, hashing
CCGTACCTCATTGTT, HTO_2, hashing
GGTAGATGTCCTCAG, HTO_3, hashing
TGGTGTCATTCTTGA, Ab1, citeseq
CTCATTGTAACTCCT, Ab2, citeseq
GCGCAACTTGATGAT, Ab3, citeseq
......
```

where each line contains the barcode and the name of a Hashing/CITE-Seq index: hashing indicates a Cell/Nucleus-Hashing index, while citeseq indicates a CITE-Seq index.

Next, create a sample sheet cellranger_sample_sheet.csv for Cell Ranger processing on your local machine. Below is an example:

```
Sample, Reference, Flowcell, Chemistry, DataType, FeatureBarcodeFile
sample_1_rna, GRCh38-2020-A, /path/to/fastq/gex, fiveprime, rna
sample_2_rna, GRCh38-2020-A, /path/to/fastq/gex, fiveprime, rna
sample_3_rna, GRCh38-2020-A, /path/to/fastq/gex, fiveprime, rna
sample_1_adt, GRCh38-2020-A, /path/to/fastq/hashing_citeseq, fiveprime, adt, /path/to/
antibody_index.csv
sample_2_adt, GRCh38-2020-A, /path/to/fastq/hashing_citeseq, fiveprime, adt, /path/to/
antibody_index.csv
sample_3_adt, GRCh38-2020-A, /path/to/fastq/hashing_citeseq, fiveprime, adt, /path/to/
antibody_index.csv
```

where

- GRCh38-2020-A is the is the Human GRCh38 (GENCODE v32/Ensembl 98) genome reference prebuilt by Cumulus. See Cumulus single-cell genome reference list for a complete list of genome references.
- /path/to/fastq/gex should be replaced by the actual local path to the folder containing FASTQ files of RNA samples.
- /path/to/fastq/hashing_citeseq should be replaced by the actual local path to the folder containing FASTQ files of Cell/Nucleus-Hashing and CITE-Seq samples.
- /path/to/antibody_index.csv should be replaced by the actual local path to antibody_index.csv file we just created above.
- rna and adt refer to gene expression data and antibody data, respectively. In specific, adt covers both citeseq and hashing types, i.e. it includes both Hashing and CITE-Seq data types.
- Samples of type rna do not need any feature barcode file for indexing.
- Columns Lane and Index are not needed if starting from FASTQ files, as mkfastq step will be skipped.

For the details on how to prepare this sample sheet, please refer to Step 3 of Cell Ranger sample sheet instruction.

Now prepare a JSON file for **cellranger_workflow** WDL workflow input on your local machine (say named cellranger_inputs.json):

```
{
    "cellranger_workflow.input_csv_file": "/path/to/cellranger_sample_sheet.csv",
    (continues on next page)
```

(continued from previous page)

where

- /path/to/cellranger_sample_sheet.csv should be replaced by the actual local path to your sample sheet created above.
- gs://my-bucket/cellranger_output is the target folder on Google bucket to store your result when the workflow job is finished, where my-bucket should be replaced by your own Google bucket name.
- Set *run_mkfastq* to false to skip the *mkfastq* step, as we start from FASTQ files.

For details on the all the workflow inputs of cellranger_workflow, please refer to Cell Ranger workflow inputs.

Now we are ready to submit a job to cloud for computing. Follow instructions in Section 1-a above.

When finished, you'll get results in gs://my-bucket/cellranger_output, which is specified in cellranger_inputs.json above. It should contain 6 subfolders, each of which is associated with one sample specified in cellranger_sample_sheet.csv above.

In specific, for each adt type sample, there are both count matrix of Hashing data and that of CITE-Seq data generated inside its corresponding subfolder, with filename suffix .hashing.csv and .citeseq.csv, respectively.

2. Demultiplex Cell-Hashing Data using DemuxEM

Run Workflow on Cloud

Next, we need to demultiplex the resulting RNA gene-count matrices. We use DemuxEM method in this example.

To be brief, we use the output of Section 1-a for illustration:

1. On your local machine, prepare a CSV-format sample sheet demux_sample_sheet.csv with the following content:

```
OUTNAME, RNA, TagFile, TYPE

exp, gs://my-bucket/cellranger_output/sample_gex/raw_feature_bc_matrix.h5, gs://my-

bucket/cellranger_output/sample_cell_hashing/sample_cell_hashing.csv, cell-

hashing
```

where OUTNAME specifies the subfolder and file names of output, which is free to be changed, RNA and TagFile columns specify the RNA and hashing tag meta-data of samples, and TYPE is cell-hashing for this phase.

2. On your local machine, also prepare an input JSON file demux_inputs.json for **demultiplexing** WDL workflow, demux_inputs.json with the following content:

```
{
    "demultiplexing.input_sample_sheet" : "/path/to/demux_sample_sheet.csv",
    "demultiplexing.output_directory" : "gs://my-bucket/demux_output"
}
```

where /path/to/demux_sample_sheet.csv should be replaced by the actual local path to demux_sample_sheet.csv created above.

For the details on these options, please refer to demultiplexing workflow inputs.

3. Submit a *demultiplexing* job with demux_inputs.json input above to cloud for execution.

For job submission:

• If you use a Cromwell server on cloud, run the following Altocumulus command on your local machine:

```
alto cromwell run -s <server-address> -p <port-number> -m_

→broadinstitute:cumulus:demultiplexing -i /path/to/demux_inputs.json -o demux_

→inputs_updated.json -b gs://my-bucket/data_source
```

where

- broadinstitute: cumulus: demultiplexing refers to demultiplexing WDL workflow published on Dockstore. Here, the version is omitted, so that the default version will be used. Alternatively, you can explicitly specify which version to use, e.g. broadinstitute: cumulus: demultiplexing: master to use its development version in *master* branch.
- /path/to/demux_inputs.json should be replaced by the actual local path to demux_inputs.json created above.
- Replace my-bucket in -b option by your own Google bucket name, and feel free to choose folder name other than data_source for uploading.
- We still need -o and -b options because demux_sample_sheet.csv is on the local machine.

Similarly, when the submission succeeds, you'll get another job ID for demultiplexing. You can use it to track the job status.

• If you use Terra, run the following Altocumulus command:

```
alto terra run -m broadinstitute:cumulus:demultiplexing -w ws-lab/ws-01 --bucket- \rightarrowfolder data_source -i /path/to/demux_inputs.json -o demux_inputs_updated.json
```

where

- broadinstitute: cumulus: demultiplexing refers to demultiplexing WDL workflow published on Dockstore. Here, the version is omitted, so that the default version will be used. Alternatively, you can explicitly specify which version to use, e.g. broadinstitute: cumulus: demultiplexing: master to use its development version in *master* branch.
- /path/to/demux_inputs.json should be replaced by the actual local path to demux_inputs.json created above.
- ws-lab/ws-01 should be replaced by your own Terra workspace full name.
- --bucket-folder: Feel free to choose folder name other than data source for uploading.
- We still need -o and --bucket-folder options because demux_sample_sheet.csv is on the local machine.

After submission, you can check the job's status in the Job History tab of your Terra workspace page.

When finished, demultiplexing results are in gs://my-bucket/demux_output/exp folder, with the following important output files:

- exp demux.zarr.zip: Demultiplexed RNA raw count matrix. This will be used for downstram analysis.
- exp.out.demuxEM.zarr.zip: This file contains intermediate results for both RNA and hashing count matrices, which is useful for compare with other demultiplexing methods.
- DemuxEM plots in PDF format. They are used for evaluating the performance of DemuxEM on the data.

(Optional) Extract Demultiplexing results

This is performed on your local machine with demultiplexing results downloaded from cloud to your machine.

To download the demultiplexed count matrix exp_demux.zarr.zip, you can either do it in Google cloud console, or using gsutil in command line:

```
gsutil -m cp gs://my-bucket/demux_output/exp/exp_demux.zarr.zip .
```

After that, in your Python environment, install Pegasus package, and follow the steps below to extract the demultiplexing results:

1. Load Libraries:

```
import numpy as np
import pandas as pd
import pegasus as pg
import matplotlib.pyplot as plt
import seaborn as sns
```

2. Load demuxEM output. For demuxEM, load RNA expression matrix with demultiplexed sample identities in Zarr format. These can be found in Google cloud console. QC 500 <= # of genes < 6000, % mito <= 10%:

3. Demultiplexing results showing singlets, doublets and unknown:

```
data.obs['demux_type'].value_counts()
```

4. Show assignments in singlets:

```
idx = data.obs['demux_type'] == 'singlet'
data.obs.loc[idx, 'assignment'].value_counts()[0:10]
```

5. Write assignment outputs to CSV:

```
data.obs[['demux_type', 'assignment']].to_csv('demux_exp.csv')
```

3. Data Analysis on CITE-Seq Data

In this phase, we merge RNA and ADT matrices for CITE-Seq data, and perform the downstream analysis.

To be brief, we use the CITE-Seq count matrix generated from Section 1-a and demultiplexing results in Section 2 for illustraion here:

1. On your local machine, prepare a CSV-format sample sheet count_matrix.csv with the following content:

```
Sample, Location, Modality exp, gs://my-bucket/demux_output/exp/exp_demux.zarr.zip,rna exp, gs://my-bucket/cellranger_output/sample_cite_seq/sample_cite_seq.csv,citeseq
```

This sample sheet describes the metadata for each modality (as one row in the sheet):

- Sample specifies the name of the modality, and all the modalities of the same sample should have one common name, as otherwise their count matrices won't be aggregated together;
- Location specifies the file location. For RNA data, this is the output of Phase 2; for CITE-Seq antibody data, it's the output of Phase 1.
- Modality specifies the modality type, which is either rna for RNA matrix, or citeseq for CITE-Seq antibody matrix.
- 2. On your local machine, also prepare a JSON file cumulus_inputs.json for **cumulus** WDL workflow, with the following content:

```
"cumulus.input_file": "/path/to/count_matrix.csv",
        "cumulus.output_directory": "gs://my-bucket/cumulus_output",
       "cumulus.output_name": "exp_merged_out",
       "cumulus.select_only_singlets": true,
       "cumulus.run_louvain": true,
       "cumulus.run_umap": true,
        "cumulus.citeseq": true,
        "cumulus.citeseq_umap": true,
        "cumulus.citeseq_umap_exclude": "Mouse_IgG1,Mouse_IgG2a,Mouse_IgG2b,Rat_
→IgG2b",
        "cumulus.plot_composition": "louvain_labels:assignment",
        "cumulus.plot_umap": "louvain_labels,assignment",
        "cumulus.plot_citeseq_umap": "louvain_labels, assignment",
        "cumulus.cluster_labels": "louvain_labels",
        "cumulus.annotate_cluster": true,
        "cumulus.organism": "human_immune"
}
```

where /path/to/count_matrix.csv should be replaced by the actual local path to count_matrix.csv created above.

A typical Cumulus WDL pipeline consists of 4 steps, which is given here. For details on Cumulus workflow inputs above, please refer to cumulus inputs.

3. Submit a demultiplexing job with cumulus_inputs.json input above to cloud for execution.

For job submission:

• If you use a Cromwell server on cloud, run the following Altocumulus command to submit the job:

```
alto cromwell run -s <server-address> -p <port-number> -m_

→broadinstitute:cumulus:cumulus -i /path/to/cumulus_inputs.json -o cumulus_

→inputs_updated.json -b gs://my-bucket/data_source
```

where

- broadinstitute: cumulus: cumulus refers to cumulus WDL workflow published on Dockstore. Here, the version is omitted, so that the default version will be used. Alternatively, you can explicitly specify which version to use, e.g. broadinstitute: cumulus: cumulus: master to use its development version in *master* branch.
- /path/to/cumulus_inputs.json should be replaced by the actual local path to cumulus_inputs.json created above.
- my-bucket in -b option should be replaced by your own Google bucket name, and feel free to choose folder name other than data_source for uploading data.
- We still need -o and -b options because count_matrix.csv is on the local machine.

Similarly, when the submission succeeds, you'll get another job ID for demultiplexing. You can use it to track the job status.

• If you use Terra, run the following Altocumulus command:

```
alto terra run -m broadinstitute:cumulus:cumulus -w ws-lab/ws-01 --bucket-folder \_ -data_source -i /path/to/cumulus_inputs.json -o cumulus_inputs_updated.json
```

where

- broadinstitute: cumulus: cumulus refers to cumulus WDL workflow published on Dockstore. Here, the version is omitted, so that the default version will be used. Alternatively, you can explicitly specify which version to use, e.g. broadinstitute: cumulus: cumulus: master to use its development version in *master* branch.
- ws-lab/ws-01 should be replaced by your own Terra workspace full name.
- --bucket-folder: Feel free to choose folder name other than data source for uploading data.
- /path/to/cumulus_inputs.json should be replaced by the actual local path to cumulus_inputs.json created above.
- We still need -o and --bucket-folder options because count_matrix.csv is on the local machine.

After submission, you can check the job's status in the Job History tab of your Terra workspace page.

When finished, all the output files are in gs://my-bucket/cumulus_output folder, with the following important files:

- exp_merged_out.aggr.zarr.zip: The ZARR format file containing both the aggregated count matrix in <genome>-rna modality, as well as CITE-Seq antibody count matrix in <genome>-citeseq modality, where <genome> is the genome reference name of your count matrices, e.g. GRCh38-2020-A.
- exp_merged_out.zarr.zip: The ZARR format file containing the analysis results in <genome>-rna modality, and CITE-Seq antibody count matrix in <genome>-citeseq modality.
- exp_merged_out . <genome>-rna . h5ad: The processed RNA matrix data in H5AD format.
- exp_merged_out.<genome>-rna.filt.xlsx: The Quality-Control (QC) summary of the raw data.
- exp_merged_out.<genome>-rna.filt.{UMI, gene, mito}.pdf: The QC plots of the raw data.
- exp_merged_out.<genome>-rna.de.xlsx: Differential Expression analysis result.
- exp_merged_out.<genome>-rna.anno.txt: The putative cell type annotation output.
- exp_merged_out.<genome>-rna.umap.pdf: UMAP plot.
- exp_merged_out.<genome>-rna.citeseq.umap.pdf: CITE-Seq UMAP plot.
- exp_merged_out.<genome>-rna.louvain_labels.assignment.composition.pdf: Composition plot.

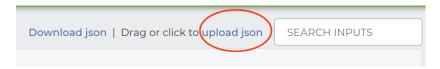
Run Analysis with Terra Web UI

For Terra users, instead of using Altocumulus to submit jobs in command line, they can also use the Terra web UI.

First, upload the local BCL data or FASTQ files to the Google bucket associated with your Terra workspace (say gs://fc-e0000000) using gsutil:

```
gsutil -m cp -r /path/to/your/data/folder gs://fc-e000000/data_source/
```

where /path/to/your/data/folder should be replaced by the actual local path to your data folder, and data_source is the folder on Google bucket to store the uploaded data.


Then for each of the 3 phases above:

1. When preparing the sample sheet, remember to replace all the local paths by the GS URIs of the corresponding folders/files that you uploaded to Google bucket. Then upload it to Google bucket as well:

```
gsutil cp /path/to/sample/sheet gs://fc-e0000000/data_source/
```

where /path/to/sample/sheet should be replaced by the actual local path to your sample sheet. Notice that for Phase 1, antibody_index.csv file should also be uploaded to Google bucket, and its references in the sample sheet must be replaced by its GS URI.

- 2. When preparing the workflow input JSON file, change the field of sample sheet to its GS URI on cloud.
- 3. Import the corresponding WDL workflow to your Terra workspace by following steps in import workflows tutorial.
- 4. In the workflow page (Workspace -> Workflows -> your WDL workflow), upload your input JSON file by clicking the "upload json" button:

5. Click "SAVE" button to save the configuration, and click "RUN ANALYSIS" button to submit the job:

You can check the job's status in the *Job History* tab of your Terra workspace page.

Example of 10X Genomics CellPlex Analysis on Cloud

In this example, you'll learn how to perform Cellplex analysis on Cloud using Cromwell.

0. Prerequisite

You need to install the corresponding Cloud SDK tool on your local machine if not:

- gcloud CLI for Google Cloud.
- AWS CLI v2 for Amazon AWS Cloud.

And then install Altocumulus in your Python environment. This is the tool for data transfer between local machine and Cloud VM instance.

In this example, we assume that your Cromwell server is already deployed on Cloud at IP address 10.0.0 with port 8000, and also assume using Google Cloud with bucket gs://my-bucket.

1. Extract Genen-Count Matrices

First step is to extract gene-count matrices from sequencer output.

In this example, we have the following experiment setting:

- A sample named cellplex_qex by pooling all RNA data together for sequencing, with index SI-TT-A1;
- A sample named cellplex_barcode for hashing data, with index SI-NN-A1;
- Three samples to perform individual control:
 - Sample A with index SI-TT-A2 and CMO ID CMO_301,
 - Sample B with index SI-TT-A3 and CMO ID CMO_302,
 - Sample C with index SI-TT-A4 and CMO ID CMO_303

To extract feature barcodes for the hashing data, we need to create a feature barcoding file (say named feature_barcode.csv). Please refer to 10X Multi CMO Reference for the sequence information of these CMO IDs:

```
ATGAGGAATTCCTGC, A
CATGCCAATAGAGCG, B
CCGTCGTCCAAGCAT, C
```

After that, create a sample sheet in CSV format (say named cellranger_sample_sheet.csv) as the following:

```
Sample, Reference, Flowcell, Lane, Index, DataType, FeatureBarcodeFile cellplex_gex, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-TT-A1, rna cellplex_barcode, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-NN-A1, cmo, /path/to/ feature_barcode.csv

A, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-TT-A2, rna

B, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-TT-A3, rna

C, GRCh38-2020-A, /path/to/flowcell/folder, *, SI-TT-A4, rna
```

where

- GRCh38-2020-A is the Human GRCh38 (GENCODE v32/Ensembl 98) genome reference prebuilt by Cumulus. See Cumulus single-cell genome reference list for a complete list of genome references.
- /path/to/flowcell/folder should be replaced by the local path to the BCL folder of your sequencer output.
- /path/to/feature_barcode.csv should be replaced by the local path to feature_barcode.csv file we just created above.
- rna and cmo refer to gene expression data and cell multiplexing oligos used in 10X Genomics CellPlex assay, respectively.
- Only the sample of cmo type needs a feature barcode file for indexing.

For details on preparing this sample sheet, please refer to CellRanger workflow sample sheet format.

Now let's prepare an input JSON file for **cellranger_workflow** WDL workflow to execute (say named cellranger_inputs.json):

```
{
    "cellranger_workflow.input_csv_file": "/path/to/cellranger_sample_sheet.csv",
    "cellranger_workflow.output_directory": "gs://my-bucket/cellplex/cellranger_output
    ""
}
```

where

- /path/to/cellranger_sample_sheet.csv should be replaced by the local path to your sample sheet created above.
- gs://my-bucket/cellplex/cellranger_output is the target folder on Google bucket to store your result when the workflow job is finished.

For details on these workflow inputs, please refer to CellRanger workflow inputs.

Now we are ready to submit a job to the Cromwell server on Cloud for computing. On your local machine, run the following command:

```
alto cromwell run -s 10.0.0.0 -p 8000 -m broadinstitute:cumulus:cellranger:master -i / →path/to/cellranger_inputs.json -o cellranger_inputs_updated.json -b gs://my-bucket/ →cellplex
```

where

- -s to specify the server's IP address (or hostname), -p to specify the server's port number.
- -m to specify which WDL workflow to use. You should use the Dockstore name of Cumulus cellranger_workflow. Here, the latest version master is used. If omit the version info, i.e. broadinstitute:cumulus:cellranger, the default version will be used.
- -i to specify the workflow input JSON file.
- -o and -b are used when the input data are local and need to be uploaded to Cloud bucket first. This can be inferred from the workflow input JSON file and sample sheet CSV file.
- -o to specify the updated workflow input JSON file after uploading the input data, with all the local paths updated to Cloud bucket URLs.
- -b to specify which folder on Cloud bucket to upload the local input data.

Notice that -o and -b options can be dropped if all of your input data are already on Cloud bucket.

After submission, you'll get the job's ID for tracking its status:

```
alto cromwell check_status -s 10.0.0.0 -p 8000 --id <your-job-ID>
```

where <pour-job-ID> should be replaced by the actual Cromwell job ID.

When the job is done, you'll get results in gs://my-bucket/cellplex/cellranger_output. It should contain 6 subfolders, each of which is associated with one sample in cellranger_sample_sheet.csv.

2. Demultiplexing

Next, we need to demultiplex the resulting gene-count matrices. In this example, we perform both DemuxEM and Souporcell methods, respectively.

For **DemuxEM**, we'll need the RNA raw count matrix in HDF5 format (gs://my-bucket/cellplex/cellranger_output/cellplex_gex/raw_feature_bc_matrix.h5) and the hashing count matrix in CSV format (gs://my-buckjet/cellplex/cellranger_output/cellplex_barcode/cellplex_barcode.csv).

For **Souporcell**, both the RNA raw count matrix above and its corresponding BAM file (gs://my-bucket/cellplex/cellranger_output/cellplex_gex/possorted_genome_bam.bam) are needed.

Prepare a sample sheet in CSV format (say named demux_sample_sheet.csv) for demultiplexing, one line for DemuxEM, one for Souporcell:

```
OUTNAME, RNA, TagFile, TYPE

cellplex_demux, gs://my-bucket/cellplex/cellranger_output/cellplex_gex/raw_feature_bc_

→matrix.h5, gs://my-buckjet/cellplex/cellranger_output/cellplex_barcode/cellplex_

→barcode.csv, cell-hashing

cellplex_souporcell, gs://my-bucket/cellplex/cellranger_output/cellplex_gex/raw_

→feature_bc_matrix.h5, gs://my-bucket/cellplex/cellranger_output/cellplex_gex/

→possorted_genome_bam.bam, genetic-pooling
```

where

• cell-hashing indicates using DemuxEM for demultiplexing, while genetic-pooling indicates using genetic pooling methods for demultiplexing, with Souporcell being the default.

For details on this sample sheet, please refer to Demultiplexing workflow sample sheet format.

Then prepare a workflow input JSON file (say named demux_inputs.json) for demultiplexing:

```
"demultiplexing.input_sample_sheet": "/path/to/demux_sample_sheet.csv",
   "demultiplexing.output_directory": "gs://my-bucket/cellplex/demux_output",
   "demultiplexing.genome": "GRCh38-2020-A",
   "demultiplexing.souporcell_num_clusters": 3
}
```

where

- /path/to/demux_sample_sheet.csv should be replaced by the local path to your demux_sample_sheet.csv created above.
- gs://my-bucket/cellplex/demux_output is the Bucket folder to write the results when the job is finished.
- GRCh38-2020-A is the genome reference used by Souporcell, which should be consistent with your settings in Step 1.
- souporcell_num_clusters is to set the number of clusters you expect to see for Souporcell clustering. Since we have 3 donors, so set it to 3.

For details, please refer to Demultiplexing workflow inputs.

Now submit the demultiplexing job to Cromwell server on Cloud:

```
alto cromwell run -s 10.0.0.0 -p 8000 -m broadinstitute:cumulus:demultiplexing:master_

→-i demux_inputs.json -o demux_inputs_updated.json -b gs://my-bucket/cellplex
```

where

- broadinstitute: cumulus: demultiplexing refers to demultiplexing workflow published on Dockstore.
- We still need -o and -b options because demux_sample_sheet.csv is on the local machine.

Similarly, when the submission succeeds, you'll get another job ID for demultiplexing. You can use it to track the job status.

When finished, below are the important output files:

- DemuxEM output: In folder gs://my-bucket/cellplex/demux_output/cellplex_demux,
 - cellplex_demux_demux.zarr.zip: Demultiplexed RNA raw count matrix. This will be used for downstream analysis.

- cellplex_demux.out.demuxEM.zarr.zip: This file contains intermediate results for both RNA and hashing count matrices, which is useful for compare with other demultiplexing methods.
- DemuxEM plots in PDF format. They are used for estimating the performance of DemuxEM on the data.
- Souporcell output: In folder gs://my-bucket/cellplex/demux_output/cellplex_souporcell,
 - cellplex_souporcell_demux.zarr.zip: Demultiplexed RNA raw count matrix. This will be used for downstream analysis.
 - clusters.tsv: Inferred droplet type and cluster assignment for each cell barcode.
 - cluster_genotypes.vcf: Inferred genotypes for each cluster.

3. Interactive Data Analysis

You may use Cumulus workflow to perform the downstream analysis in a batch way. Alternatively, you can also download the demultiplexing results from the Cloud bucket to your local machine, and perform the analysis interactively. This section introduces how to use Cumulus' analysis module Pegasus to load demultiplexing results, perform quality control (QC), and compare the performance of the two methods.

You'll need to first install Pegasus in your local Python environment. Also, download the demultiplexed raw counts in .zarr.zip format mentioned above to your local machine.

3.1. Extract Singlet/Doublet Type and Assignment

We can load the DemuxEM result, and perform QC by:

where qc_metrics and filter_data are Pegasus functions to filter out low quality cells, and keep those with number of genes within range [500, 6000) and having expression of mitochondrial genes < 20%. Please see Pegasus preprocess tools for details.

There are two columns in *data_demuxEM.obs* field related to demultiplexing results:

- demux_type: This column stores the singlet/doublet type of each cell: singlet, doublet, or unknown.
- assignment: This column stores the more detailed assignment of cells regarding samples/donors.

To get the distribution regarding these columns, e.g. *demux_type*:

```
data_demuxEM.obs['demux_type'].value_counts()
```

Besides, you can export the cell barcodes along with their singlet/doublet type and assignment as a CSV file by:

```
data_demuxEM.obs[['demux_type', 'assignment']].to_csv("demuxEM_assignment.csv")
```

We can also do it similarly for the Souporcell result as above, by reading cellplex_souporcell_demux.zarr.zip instead.

3.2. Compare the Two Demultiplexing Methods

We can compare the performance of DemuxEM and Souporcell by plotting a heatmap showing their singlet/doublet assignment results.

Assume we've already loaded the two results (data_demuxEM for DemuxEM result, data_soupcrcell for Soupcrcell result), and performed QC as in 3.1. The following Python code will generate this heatmap in an interactive Python environment (e.g. in a Jupyter notebook):

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
def extract_assignment(data):
   assign = data.obs['demux_type'].values.astype('object')
   idx_singlet = (data.obs['demux_type'] == 'singlet').values
   assign[idx_singlet] = data.obs.loc[idx_singlet, 'assignment'].values.
→astype(object)
    return assign
assign_demuxEM = extract_assignment(data_demuxEM)
assign_souporcell = extract_assignment(data_souporcell)
df = pd.crosstab(assign_demuxEM, assign_souporcell)
df.columns.name = df.index.name = ""
ax = plt.gca()
ax.xaxis.tick_top()
ax = sns.heatmap(df, annot=True, fmt='d', cmap='inferno', ax=ax)
plt.tight_layout()
plt.gcf().dpi=500
```

3.3. Downstream Analysis

To perform further downstream analysis on the singlets, please refer to Pegasus tutorials.

Examples using Terra to perform single-cell sequencing analysis are provided here. Please click the topics on the left panel under title "Examples" to explore.

1.1.12 10x Visium

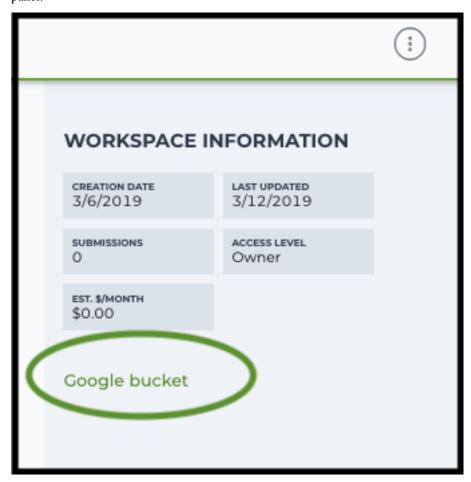
Run Space Ranger tools using spaceranger workflow

spaceranger_workflow wraps Space Ranger to process 10x Visium data.

A general step-by-step instruction

This section mainly considers jobs starting from BCL files. If your job starts with FASTQ files, and only need to run spaceranger count part, please refer to this subsection.

1. Import spaceranger_workflow


Import *spaceranger_workflow* workflow to your workspace by following instructions in Import workflows to Terra. You should choose workflow **github.com/lilab-bcb/cumulus/Spaceranger** to import.

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *spaceranger workflow* workflow in the drop-down menu.

2. Upload sequencing and image data to Google bucket

Copy your sequencing output to your workspace bucket using gsutil (you already have it if you've installed Google cloud SDK) in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

Similarly, copy all images for spatial data to the same google bucket.

Note: If input is a folder of BCL files, users do not need to upload the whole folder to the Google bucket. Instead,

they only need to upload the following files:

RunInfo.xml
RTAComplete.txt
runParameters.xml
Data/Intensities/s.locs
Data/Intensities/BaseCalls

If data are generated using MiSeq or NextSeq, the location files are inside lane subfloders L001 under Data/Intensities/. In addition, if users' data only come from a subset of lanes (e.g. L001 and L002), users only need to upload lane subfolders from the subset (e.g. Data/Intensities/BaseCalls/L001, Data/Intensities/BaseCalls/L002 and Data/Intensities/L001, Data/Intensities/L002 if sequencer is MiSeq or NextSeq).

Alternatively, users can submit jobs through command line interface (CLI) using altocumulus, which will smartly upload BCL folders according to the above rules.

3. Prepare a sample sheet

3.1 Sample sheet format:

Please note that the columns in the CSV can be in any order, but that the column names must match the recognized headings.

For **FFPE** data, **ProbeSet** column is mandatory.

The sample sheet describes how to demultiplex flowcells and generate channel-specific count matrices. Note that *Sample*, *Lane*, and *Index* columns are defined exactly the same as in 10x's simple CSV layout file.

A brief description of the sample sheet format is listed below (**required column headers are shown in bold**).

Column	Description
Sample	Contains sample names. Each 10x channel should have a unique sample name.
Reference	1
	Provides the reference genome used by Space Ranger for each 10x channel. The elements in the <i>reference</i> column can be either Google bucket URLs to reference tarballs or keywords such as <i>GRCh38-2020-A</i> . A full list of available keywords is included in each of the following data type sections (e.g. sc/snRNA-seq) below.
Flowcell	
	Indicates the Google bucket URLs of uploaded BCL folders. If starts with FASTQ files, this should be Google bucket URLs of uploaded FASTQ folders. The FASTQ folders should contain one subfolder for each sample in the flowcell with the sample name as the subfolder name. Each subfolder contains FASTQ files for that sample.
Lane	
	Tells which lanes the sample was pooled into. Can be either single lane (e.g. 8) or a range (e.g. 7-8) or all (e.g. *).
Index	Sample index (e.g. SI-GA-A12).
ProbeSet	Probe set for FFPE samples. Choosing from human_probe_v1 (10x human probe set, CytoAssist-incompatible), human_probe_v2 (10x human probe set, CytoAssist-compatible) and mouse_probe_v1 (10x mouse probe set). Alternatively, a CSV file describing the probe set can be directly used. Setting ProbeSet to "" for a sample implies the sample is not FFPE.
Image	Cloud bucket url for a brightfield tissue H&E image in .jpg or .tiff format. This column is mutually exclusive with DarkImage and ColorizedImage columns.
DarkImage	Cloud bucket urls for Multi-channel, dark-background fluorescence image as either a single, multi-layer .tiff file, multiple .tiff or .jpg files, or a pre-combined color .tiff or .jpg file. If multiple files are provided, please separate them by ';'. This column is mutually exclusive with Image and ColorizedImage columns.
ColorizedIma	g€loud bucket url for a color composite of one or more fluorescence image channels saved as a single-page, single-file color .tiff or .jpg. This column is mutually exclusive with Image and DarkImage columns.
CytaImage	Cloud bucket url for a brightfield image generated by the CytAssist instrument.
Slide	Visium slide serial number. If both Slide and Area are empty, the –unknown-slide option would be set.
Area	Visium capture area identifier. Options for Visium are A1, B1, C1, D1. If both Slide and Area are empty, the –unknown-slide option would be set.
SlideFile	Slide layout file indicating capture spot and fiducial spot positions. Only required if internet access is not available.
	neAtlignment file produced by the manual Loupe alignment step.
TargetPanel	Cloud bucket url for a target panel CSV for targeted gene expression analysis.

The sample sheet supports sequencing the same 10x channels across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list it in multiple rows, with one flowcell per row. In the following example, we have 2 samples sequenced in two flowcells.

Example:

3.2 Upload your sample sheet to the workspace bucket:

Example:

```
gsutil cp /foo/bar/projects/sample_sheet.csv gs://fc-e0000000-0000-

$\to$0000-0000-00000000000/
```

4. Launch analysis

In your workspace, open spaceranger_workflow in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Run workflow with inputs defined by file paths as below

- Run workflow with inputs defined by file paths
- Run workflow(s) with inputs defined by data table

and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.

5. Notice: run spaceranger mkfastg if you are non Broad Institute users

Non Broad Institute users that wish to run spaceranger mkfastq must create a custom docker image that contains bcl2fastq.

See *bcl2fastq* instructions.

6. Run spaceranger count only

Sometimes, users might want to perform demultiplexing locally and only run the count part on the cloud. This section describes how to only run the count part via spaceranger_workflow.

- 1. Copy your FASTQ files to the workspace using gsutil in your unix terminal. There are two cases:
 - Case 1: All the FASTQ files are in one top-level folder. Then you can simply upload this folder to Cloud, and in your sample sheet, make sure **Sample** names are consistent with the filename prefix of their corresponding FASTQ files.

• Case 2: In the top-level folder, each sample has a dedicated subfolder containing its FASTQ files. In this case, you need to upload the whole top-level folder, and in your sample sheet, make sure **Sample** names and their corresponding subfolder names are identical.

Notice that if your FASTQ files are downloaded from the Sequence Read Archive (SRA) from NCBI, you must rename your FASTQs to follow the bcl2fastq file naming conventions.

Example:

- 2. Create a sample sheet following the similar structure as above, except the following differences:
 - Flowcell column should list Google bucket URLs of the FASTQ folders for flowcells.
 - Lane and Index columns are NOT required in this case.

Example:

3. Set optional input run_mkfastq to false.

Visium spatial transcriptomics data

To process spatial transcriptomics data, follow the specific instructions below.

Sample sheet

1. Reference column.

Pre-built scRNA-seq references are summarized below.

Keyword	Description
GRCh38-2020-	Human GRCh38 (GENCODE v32/Ensembl 98)
A	
mm10-2020-A	Mouse mm10 (GENCODE vM23/Ensembl 98)

Workflow input

For spatial data, spaceranger_workflow takes Illumina outputs and related images as input and runs spaceranger mkfastq and spaceranger count. Revalant workflow inputs are described below, with required inputs highlighted in bold.

137

	neDescription	Example	Default
inpu	t_Scarnpflide Sheet (contains Sample,	"gs://fc-e0000000-	
	Reference, Flowcell, Lane, Index	0000-0000-0000-	
	as required and ProbeSet, Image,	0000000000000/sample_sheet.csv"	
	DarkImage, ColorizedImage, Cy-		
	taImage, Slide, Area, SlideFile,		
	LoupeAlignment, TargetPanel as		
	optional)		
outp	u Q_dipectory ctory	"gs://fc-e0000000-	Results are writter
		0000-0000-0000-	under directory out
		0000000000000/spaceranger_output	* = *
			will overwrite any
			existing files at this
			location.
run_r	mlkfastqyou want to run	true	true
	spaceranger mkfastq		
run_c	cdfint you want to run	true	true
	spaceranger count		
delet	e <u>Ifndaletdo BCdirdatectr</u> ories after de-	false	false
	mux. If false, you should delete		
	this folder yourself so as to not in-		
	cur storage charges		
mkfa	as Number oder missmatchess allowed	0	
	in matching barcode indices		
	(bcl2fastq2 default is 1)		
reorie	enHoimusgeswith automatic fiducial	true	true
	alignment. This option will apply		
	to all samples in the sample sheet.		
	Spaceranger will attempt to find		
	the best alignment of the fiducial		
	markers by any rotation or mirror-		
G1ton	ing of the image.	tmio	tenso
mer		true	true
	ing the "included" column of the probe set CSV.		
doni	index of DAPI channel (1-	2	
uapı		2	
	indexed) of fluorescence image,		
	only used in the CytaAssist case,		
unler	with dark background image. oWse shide option if the slide serial	visium-2	
unKI	number and area identifier have	VISIUIII-Z	
	been lost. Choose from visium-1,		
	visium-2 and visium-2-large.		
no h	affurn this option on to disable	false	false
10_0	BAM file generation.	Taise	14150
secor	ndanform Space Ranger secondary	false	false
SCCOL	analysis (dimensionality reduc-	14150	10150
	tion, clustering, etc.)		
r1 1a	enletterd trim the input Read 1 to this	28	
1_10	length before analysis		
r2 1a	enletterd trim the input Read 1 to this	50	
10	length before analysis. This value		
	will be set to 50 automatically for		
	FFPE samples if spaceranger ver-		
	sion < 2.0.0.		
		"2.0.0"	"2.0.0"
3, <u>0</u> ,0	- Simple with the could be 2		
3.0 (October 30, 2022 Espagning true ston, could be: 2.	2.0.0	2.0.0
	2. 0.0, 1.3.1, 1.3.0 gconfisionlocker version used for	"0.3"	"0.3"

1.1.

Workflow output

See the table below for important sc/snRNA-seq outputs.

Name	Туре	Description
fastq_outputs	Array[String]?	A list of cloud urls containing FASTQ files, one url per
		flowcell.
count_outputs	Array[String]?	A list of cloud urls containing spaceranger count out-
		puts, one url per sample.
metrics_summaries	File?	A excel spreadsheet containing QCs for each sample.
spaceranger_count.output_v	ve Ab<u>rı</u>sayı[Trilæ] [?	A list of htmls visualizing QCs for each sample (spac-
		eranger count output).

Build Space Ranger References

Reference built by Cell Ranger for sc/snRNA-seq should be compatible with Space Ranger. For more details on building references uing Cell Ranger, please refer to here.

1.1.13 Nanostring GeoMx DSP

This section contains two workflows: **geomxngs_fastq_to_dcc** and **geomxngs_dcc_to_count_matrix**.

geomxngs_fastq_to_dcc workflow wraps Nanostring GeoMx Digital Spatial NGS Pipeline and can convert FASTQ files into DCC files.

geomxngs_dcc_to_count_matrix workflow takes the DCC zip file from **geomxngs_fastq_to_dcc** and other files produced by the GeoMx DSP machine as inputs, and outputs an area of illumination (AOI) by probe count matrix with pathologists' annotation.

Convert FASTQ files into DCC files by the Nanostring GeoMx Digital Spatial NGS Pipeline

The **geomxngs_fastq_to_dcc** workflow converts FASTQ files to DCC files by wrapping the Nanostring GeoMx Digital Spatial NGS Pipeline. After generating DCC files, use the **geomxngs_dcc_to_count_matrix** workflow to generate an area of interest by probe count matrix.

Workflow Input

Relevant workflow inputs are described below (required inputs in bold)

Name	Description	Example	Default
fastq_c	ine to Fig. 1 directory URL	"gs://foo/bar/fastqs" or "s3://foo/bar/fastqs"	
ini	Configuration file in INI format, containing pipeline processing parameters	"gs://foo/bar/config.ini"	
output_directorywrite results		"gs://foo/bar/out" or "s3://foo/bar/out"	
1	map original FASTQ names to FASTQ names that GeoMX recognizes.	"gs://foo/bar/fastq_renam	
	fa Whedractor delete the input fastqs upon successful completion	true	false
geomxi	gyevenicsinor the geomx software, currently only "2.3.3.10".	"2.3.3.10"	"2.3.3.10"
docker	registry registry to use for this workflow. Options: • "quay.io/cumulus" for images on Red Hat registry; • "cumulusprod" for backup images on Docker Hub.	"quay.io/cumulus"	"quay.io/cumulus"
backen	Backend for computation. Available options:	"aws"	"gcp"
zones	Google cloud zones	"us-central1-a"	"us-central1-a us- central1-b us-central1-c us-central1-f"
preemptiNamber of preemptible tries		2	2
memory Memory string		"64GB"	"64GB"
cpu	Number of CPUs	4	4
disk_spa@isk space in GB		500	500
aws_qu	ettenamm URI of the AWS job queue to be used. Only works when backend is aws.	"arn:aws:batch:us- east-1:xxx:job- queue/priority-gwf"	(0)

Workflow Output

Name	Description	Туре
dcc_zip	URL to the output DCC zip file	String
geomxngs_output	URL to the output of geomxngspipeline; the DCC zip file is part of the	String
	output here	

Generate probe count matrix with pathologists' annotation

The **geomxngs_dcc_to_count_matrix** workflow generates an area of illumination (AOI) by probe count matrix with patholgoists' annotation from the output of the **geomxngs_fastq_to_dcc** workflow and user inputs.

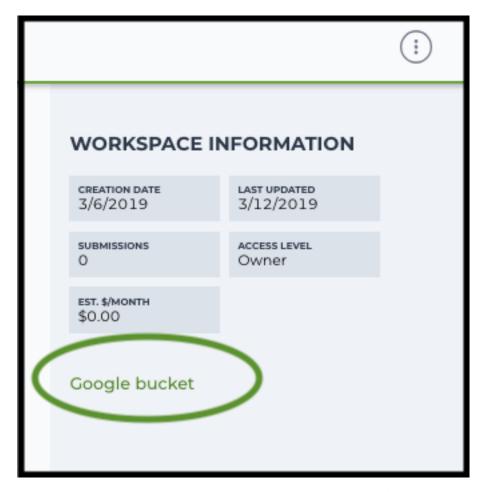
Workflow Input

Workflow inputs are described below (required inputs in bold).

Name	Description	Example	Default
dcc_zip	DCC zip file from geomxngs_fastq_to_dcc work-	"gs://foo/bar/out/DCC-	
	flow output	20221001.zip"	
ini	Configuration file in INI format, containing	"gs://foo/bar/config.ini"	
	pipeline processing parameters		
lab_worksheet file containing library setups		"gs://foo/bar/LabWorksheet.txt"	
dataset	Data QC and annotation file (Excel) downloaded	"gs://foo/bar/BioprobeQC	Cxlsx"
	from instrument after uploading DCC zip file; we		
	only use the first tab (SegmentProperties)		
pkc	GeoMx DSP configuration file to associate as-	"Human_WTA_v1.0"	
	say targets with GeoMx HybCode barcodes and		
	Seq Code primers. Options: - CTA_v1.0-4 for		
	Cancer Transcriptome Atlas - COVID-19_v1.0		
	for COVID-19 Immune Response Atlas - Hu-		
	man_WTA_v1.0 for Human Whole Transcriptome		
	Atlas - Mouse_WTA_v1.0 for Mouse Whole Tran-		
	scriptome Atlas If your configuration file is not		
	listed, you can provide a URL to a PKC zip file		
	or PKC file instead.		
output_	_dilRectorywrite results	"gs://foo/bar/out" or "s3://foo/bar/out"	
backend Backend for computation. Available options: -		"aws"	"gcp"
	"gcp" for Google Cloud - "aws" for Amazon AWS		
	- "local" for local machine		
docker	r Deisther registry to use for this workflow. Options:	"quay.io/cumulus"	"quay.io/cumulus"
	• "quay.io/cumulus" for images on Red Hat		
	registry;		
	 "cumulusprod" for backup images on Docker 		
	Hub.		
	version.	"1.0.0"	"1.0.0"
	ti Nu mber of preemptible tries	2	2
	Memory string	"8GB"	"8GB"
cpu	Number of CPUs	1	1
	is Extpade sk space in GB.	5	5
aws_qu	ethen ann URI of the AWS job queue to be used. Only	"arn:aws:batch:us-	6627
	works when backend is aws	east-1:xxx:job-	
		queue/priority-gwf''	

Workflow Output

Name	Description	Туре
count_matrix_h5a	dURL to a count matrix in h5ad format. X contains the count matrix, obs	String
	contains AOI information, and .var contains probe metadata	
count_matrix_text	URL to a count matrix in text format. Each row is one probe and each	String
	column is one AOI. First column is RTS_ID (Readout Tag Sequence-ID	
	(RTS-ID)). Second column is Gene (if multiple probes map to the same	
	gene, their values are the same). Third columns is Probe (if multiple probes	
	map to the same gene, values are different control_1, control_2). Starting	
	from column 4, we have counts.	
count_matrix_met	add that to a count matrix metadata in text format. All columns from dataset	String
	file are included; each row describes one AOI (area of illumination)	


1.1.14 Extract gene-count matrices from plated-based SMART-Seq2 data

Run SMART-Seq2 Workflow

Follow the steps below to extract gene-count matrices from SMART-Seq2 data on Terra. This WDL aligns reads using *STAR*, *HISAT2*, or *Bowtie 2* and estimates expression levels using *RSEM*.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

-m means copy in parallel, -r means copy the directory recursively.

2. Create a sample sheet.

Please note that the columns in the TSV can be in any order, but that the column names must match the recognized headings.

The sample sheet provides metadata for each cell:

Column	Description
entity:sample	e Cell name.
plate	Plate name. Cells with the same plate name are from the same plate.
read1	Location of the FASTQ file for read1 in the cloud (gsurl).
read2	(Optional). Location of the FASTQ file for read2 in the cloud (gsurl). This field
	can be skipped for single-end reads.

Example:

3. Upload your sample sheet to the workspace bucket.

Example:

4. Import *smartseq2* workflow to your workspace.

Import by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/cumulus/Smart-Seq2** to import.

Moreover, in the workflow page, click Export to Workspace... button, and select the workspace to which you want to export *smartseq2* workflow in the drop-down menu.

- $5.\ \ In\ \ your\ \ workspace,\ open\ \ smartseq2$ in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below
 - Run workflow with inputs defined by file paths
 - Run workflow(s) with inputs defined by data table

and click SAVE button.

Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

	Description	Example	Defau	lt
input_	ts a file Sheet (contains entity:sample, plate,	"gs://fc-e0000000-0000-0000-0000-		
	read1, read2)	000000000000/sample_sheet.tsv"		
output	_ Girqutorly rectory	"gs://fc-e0000000-0000-0000-0000-		
referen	• Pre-created genome references: • Pre-created genome references: • "GRCh38_ens93filt" for human, genome version is GRCh38, gene annotation is generated using human Ensembl 93 GTF according to cellranger mkgtf; • "GRCm38_ens93filt" for mouse, genome version is GRCm38, gene annotation is generated using mouse Ensembl 93 GTF according to cellranger mkgtf; • Create a custom genome reference using smartseq2_create_reference workflow, and specify its Google bucket URL	"GRCh38_ens93filt", or "gs://fc-e0000000-0000-0000-0000- 000000000000/rsem_ref.tar.gz"		
aligner	here. Which aligner to use for read alignment. Options are "hisat2-hca", "star" and "bowtie"	"star"	"hisat2	_
output_	gW/hortherbam output bam file with alignments mapped to genomic coordinates and annotated with their posterior probabilities.	false	false	
smarts	eq SM/ARToS eq2 version to use. Versions available: 1.3.0.	"1.3.0"	"1.3.0"	
docker	nogister registry to use. Options: • "quay.io/cumulus" for images on Red Hat registry; • "cumulusprod" for backup images on Docker Hub.	"quay.io/cumulus"	"quay.ī	o/cumulus'
zones	Google cloud zones	"us-east1-d us-west1-a us-west1-b"	"us- central a us- central b us- central c us- central f us- east1- b us- east1- d us- west1- a us- west1- b us-	1-
44		Chapter 1. Release Highlights in Current		
			c"	
num_c	puNumber of cpus to request for one node	4	4	
memor	yMemory size string	"3.60G"	If	

Outputs:

Name	Туре	Description
output_count_matrix	String	Point to a Google bucket URL for count matrix in matrix
		market format.
rsem_trans_bam	Array[String?]	An array of Google bucket URLs for RSEM transcrip-
		tomic BAM files
rsem_genome_bam	Array[String?]	An array of Google bucket URLs for RSEM genomic
		BAM files if output_genome_bam is true.
rsem_gene	Array[File?]	An array of RSEM gene expression estimation files.
rsem_isoform	Array[File?]	An array of RSEM isoform expression estimation files.
rsem_time	Array[File?]	An array of RSEM execution time log files.
aligner_log	Array[File?]	An array of Aligner log files.
rsem_cnt	Array[File?]	An array of RSEM count files.
rsem_model	Array[File?]	An array of RSEM model files.
rsem_theta	Array[File?]	An array of RSEM generated theta files.

This WDL generates one gene-count matrix in matrix market format:

- output_count_matrix is a folder containing three files: matrix.mtx.gz, barcodes.tsv.gz, and features.tsv.gz.
- matrix.mtx.gz is a gzipped matrix in matrix market format.
- barcodes.tsv.gz is a gzipped TSV file, containing 5 columns. 'barcodekey' is cell name. 'plate' is the plate name, which can be used for batch correction. 'total_reads' is the total number of reads. 'alignment_rate' is the alignment rate obtained from the aligner. 'unique_rate' is the percentage of reads aligned uniquely to a gene. Cells sequenced with single-end reads appear first in 'barcodekey'.
- features.tsv.gz is a gzipped TSV file, containing 2 columns. 'featurekey' is gene symbol. 'featureid' is Ensembl ID.

The gene-count matrix can be fed directly into **cumulus** for downstream analysis.

TPM-normalized counts are calculated as follows:

- 1. Estimate the gene expression levels in TPM using *RSEM*.
- Suppose c reads are achieved for one cell, then calculate TPM-normalized count for gene i as TPM_i / 1e6
 * c.

TPM-normalized counts reflect both the relative expression levels and the cell sequencing depth.

Custom Genome

We also provide a way of generating user-customized Genome references for SMART-Seq2 workflow.

1. Import smartseq2_create_reference workflow to your workspace.

Import by following instructions in Import workflows to Terra. You should choose **github.com/lilab-bcb/cumulus/Smart-Seq2_create_reference** to import.

Moreover, in the workflow page, click Export to Workflow... button, and select the workspace to which you want to export smartseq2_create_reference in the drop-down menu

- 2. In your workspace, open smartseq2_create_reference in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below
 - Run workflow with inputs defined by file paths
 - Run workflow(s) with inputs defined by data table

and click SAVE button.

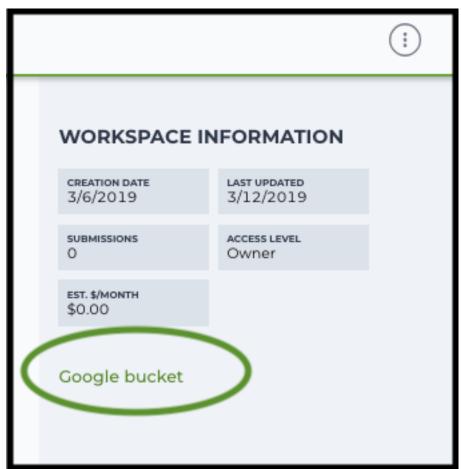
Inputs:

Please see the description of inputs below. Note that required inputs are shown in bold.

Name		Type or Example	Default
fasta	Genome fasta file		
		File. For example, "gs://fc-e0000000-0000-0000-0000- 00000000000/Homo_sapiens.GRCh38.dna.prir	nary_assembly.fa"
gtf	GTF gene annotation file (e.g. Homo_sapiens.GRCh38.83.gtf)	File. For example, "gs://fc-e0000000-0000-0000-0000- 000000000000/Homo_sapiens.GRCh38.83.gtf"	
output	_ diwegtory ucket url for the output folder	"gs://fc-e0000000-0000-0000-0000- 0000000000000	
genom	eOutput reference genome name. Output reference is a gzipped tarball with name genome_aligner.tar.gz	"GRCm38_ens97filt"	
aligner	Build indices for which aligner, choices are hisat2-hca, star, or bowtie2.	"hisat2-hca"	"hisat2- hca"
smarts	eq2_version SMART-Seq2 version to use. Versions available: 1.3.0.	"1.3.0"	"1.3.0"
docker	negistry registry to use. Options: • "quay.io/cumulus" for images on Red Hat registry; • "cumulusprod" for backup images on Docker Hub.	"quay.io/cumulus"	"quay.io/cumulus"
zones	Google cloud zones	"us-central1-c"	"us- central1- b"
сри	Number of CPUs	Integer	If aligner is bowtie2 or hisat2-hca, 8; other-wise 32
memor	yMemory size string	String	If aligner is bowtie2 or hisat2-hca,
1.1. 2.3	3.0 October 30, 2022		"7.2G"; oth 147; er- wise "120G"

Outputs

Name	Type	Description
output_reference	File	The custom Genome reference generated. Its default file
		<pre>name is genome_aligner.tar.gz.</pre>
monitoring_log	File	CPU and memory profiling log.


1.1.15 Bulk RNA-Seq

Run Bulk RNA-Seq Workflow

Follow the steps below to generate count matrices from bulk RNA-Seq data on Terra. This WDL estimates expression levels using *RSEM*.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag Request an UGER node:

```
reuse UGER qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

```
reuse Google-Cloud-SDK
```

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

```
gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-

$\to$0000-0000-000000000000VK18WBC6Z4$
```

-m means copy in parallel, -r means copy the directory recursively.

2. Create a Terra data table

Example:

You are free to add more columns, but sample ids and URLs to fastq files are required.

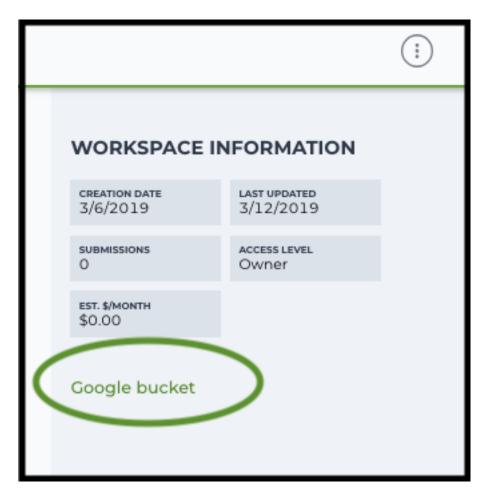
- 3. Upload your TSV file to your workspace. Open the DATA tab on your workspace. Then click the upload button on left TABLE panel, and select the TSV file above. When uploading is done, you'll see a new data table with name "sample":
- 4. Import bulk_rna_seq workflow to your workspace. Then open bulk_rna_seq in the WORKFLOW tab. Select Run workflow(s) with inputs defined by data table, and choose sample from the drop-down menu.

Inputs:

Please see the description of important inputs below. Note that required inputs are in bold.

Name	Description	Default
sample_name	Sample name	
read1	Array of URLs to read 1	
read2	Array of URLs to read 2	
reference	Reference to align reads to • Pre-created genome references: - "GRCh38_ens93filt" for human, genome version is GRCh38, gene annotation is generated using human Ensembl 93 GTF according to cellranger mkgtf; - "GRCm38_ens93filt" for mouse, genome version is GRCm38, gene annotation is generated using mouse Ensembl 93 GTF according to cellranger mkgtf; • Create a custom genome reference using smart-seq2_create_reference workflow, and specify its Google	
aligner	bucket URL here. Which aligner to use for read alignment. Options are "hisat2-hca", "star"	"star"
	and "bowtie"	
output_genome_b	and annotated with their posterior probabilities.	false

Outputs:


Name	Description
rsem_gene	RSEM gene expression estimation.
rsem_isoform	RSEM isoform expression estimation.
rsem_trans_bam	RSEM transcriptomic BAM.
rsem_genome_bam	RSEM genomic BAM files if output_genome_bam is true.
rsem_time	RSEM execution time log.
aligner_log	Aligner log.
rsem_cnt	RSEM count.
rsem_model	RSEM model.
rsem_theta	RSEM theta.

1.1.16 Drop-seq pipeline

This workflow follows the steps outlined in the Drop-seq alignment cookbook from the McCarroll lab, except the default STAR aligner flags are *—limitOutSJcollapsed 1000000 —twopassMode Basic*. Additionally the pipeline provides the option to generate count matrices using dropEst.

1. Copy your sequencing output to your workspace bucket using gsutil in your unix terminal.

You can obtain your bucket URL in the dashboard tab of your Terra workspace under the information panel.

Note: Broad users need to be on an UGER node (not a login node) in order to use the -m flag Request an UGER node:

```
reuse UGER qrsh -q interactive -l h_vmem=4g -pe smp 8 -binding linear:8 -P regevlab
```

The above command requests an interactive node with 4G memory per thread and 8 threads. Feel free to change the memory, thread, and project parameters.

Once you're connected to an UGER node, you can make gsutil available by running:

```
reuse Google-Cloud-SDK
```

Use gsutil cp [OPTION]... src_url dst_url to copy data to your workspace bucket. For example, the following command copies the directory at /foo/bar/nextseq/Data/VK18WBC6Z4 to a Google bucket:

```
gsutil -m cp -r /foo/bar/nextseq/Data/VK18WBC6Z4 gs://fc-e0000000-0000-

$\to$0000-0000-000000000000VK18WBC6Z4$
```

- -m means copy in parallel, -r means copy the directory recursively.
- 2. Non Broad Institute users that wish to run bcl2fastq must create a custom docker image.

See *bcl2fastq* instructions.

3. Create a sample sheet.

Please note that the columns in the CSV must be in the order shown below and does not contain a header line. The sample sheet provides either the FASTQ files for each sample if you've already run bcl2fastq or a list of BCL directories if you're starting from BCL directories. Please note that BCL directories must contain a valid bcl2fastq sample sheet (SampleSheet.csv):

Column	Description
Name	Sample name.
Read1	Location of the FASTQ file for read1 in the cloud (gsurl).
Read2	Location of the FASTQ file for read2 in the cloud (gsurl).

Example using FASTQ input files:

Note that in this example, sample-1 was sequenced across two flowcells.

Example using BCL input directories:

```
gs://fc-e0000000-0000-0000-0000-00000000000/flowcell-1
gs://fc-e0000000-0000-0000-0000-0000000000/flowcell-2
```

Note that the flow cell directory must contain a bcl2fastq sample sheet named SampleSheet.csv.

4. Upload your sample sheet to the workspace bucket.

Example:

5. Import *dropseq_workflow* workflow to your workspace.

See the Terra documentation for adding a workflow. The *dropseq_workflow* is under Broad Methods Repository with name "cumulus/dropseq workflow".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace you want to export *dropseg workflow* workflow in the drop-down menu.

- 6. In your workspace, open dropseq_workflow in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below
 - Run workflow with inputs defined by file paths
 - O Run workflow(s) with inputs defined by data table

and click the SAVE button.

Inputs

Please see the description of important inputs below.

Name	Description	
input_csv_file		
output_director	yPipeline output directory (gs URL e.g. "gs://fc-e0000000-0000-0000-0000-0000-0000-000	
reference	hg19, GRCh38, mm10, hg19_mm10, mmul_8.0.1 or a path to a custom reference JSON file	
run_bcl2fastq	Whether your sample sheet contains one BCL directory per line or one sample per line (default false)	
run_dropseq_to	ol Whether to generate count matrixes using Drop-Seq tools from the McCarroll lab (default true)	
run_dropest	Whether to generate count matrixes using dropEst (default false)	
cellular_barcod	eOphitelistwhitelist of known cellular barcodes	
I	naMaximal number of output cells	
	mWhinimal number of genes for cells after the merge procedure (default 100)	
	dropest_min_meilder_estanotidofor the merge procedure (default 0.2)	
dropest_max_cb_Maergediedistahista beetween barcodes (default 2)		
dropest_max_umManergit_drisitantistantiveen UMIs (default 1)		
dropest_min_g	dropest_min_gentesin_bes	
	(default 10)	
dropest_merge_	dropest_merge blascophescipeenisege strategy (can be slow), recommended to use when the list of real barcodes is	
	not available (default true)	
dropest_velocytoSave separate count matrices for exons, introns and exon/intron spanning reads (default true)		
trim_sequence	The sequence to look for at the start of reads for trimming (default "AAGCAGTGGTAT-	
	CAACGCAGAGTGAATGGG")	
trim_num_bases How many bases at the beginning of the sequence must match before trimming occur (default 5)		
	umi_base_range The base location of the molecular barcode (default 13-20)	
	cellular_barcode Thas basen geation of the cell barcode (default 1-12)	
star_flags	Additional options to pass to STAR aligner	

Please note that run_bcl2fastq must be set to true if you're starting from BCL files instead of FASTQs.

Custom Genome JSON

If you're reference is not one of the predefined choices, you can create a custom JSON file. Example:

The fields star_cpus and star_memory are optional and are used as the default cpus and memory for running STAR with your genome.

Outputs

The pipeline outputs a list of google bucket urls containing one gene-count matrix per sample. Each gene-count matrix file produced by Drop-seq tools has the suffix 'dge.txt.gz', matrices produced by dropEst have the extension .rds.

Building a Custom Genome

The tool **dropseq bundle** can be used to build a custom genome. Please see the description of important inputs below.

Name	Description
fasta_file	Array of fasta files. If more than one species, fasta and gtf files must be in the same order.
gtf_file	Array of gtf files. If more than one species, fasta and gtf files must be in the same order.
genomeSAinde	x Newsets (bases) of the SA pre-indexing string. Typically between 10 and 15. Longer strings will
	use much more memory, but allow faster searches. For small genomes, must be scaled down to
	min(14, log2(GenomeLength)/2 - 1)

dropseq_workflow Terra Release Notes

Version 11

• Added fastq to sam memory and trim bam memory workflow inputs

Version 10

• Updated workflow to WDL version 1.0

Version 9

• Changed input bcl2fastq_docker_registry from optional to required

Version 8

· Added additional parameters for bcl2fastq

Version 7

• Added support for multi-species genomes (Barnyard experiments)

Version 6

 Added star_extra_disk_space and star_disk_space_multiplier workflow inputs to adjust disk space allocated for STAR alignment task.

Version 5

• Split preprocessing steps into separate tasks (FastqToSam, TagBam, FilterBam, and TrimBam).

Version 4

- Handle uncompressed fastq files as workflow input.
- Added optional prepare_fastq_disk_space_multiplier input.

Version 3

• Set default value for docker_registry input.

Version 2

• Added docker_registry input.

Version 1

- · Renamed sccloud to cumulus
- Added use_bases_mask option when running bcl2fastq

Version 18

• Created a separate docker image for running bcl2fastq

Version 17

- Fixed bug that ignored WDL input star_flags (thanks to Carly Ziegler for reporting)
- Changed default value of star_flags to the empty string (Prior versions of the WDL incorrectly indicated that basic 2-pass mapping was done)

Version 16

- · Use cumulus dockerhub organization
- Changed default dropEst version to 0.8.6

Version 15

• Added drop_deq_tools_prep_bam_memory and drop_deq_tools_dge_memory options

Version 14

• Fix for downloading files from user pays buckets

Version 13

• Set GCLOUD_PROJECT_ID for user pays buckets

Version 12

• Changed default dropEst memory from 52G to 104G

Version 11

• Updated formula for computing disk size for dropseq_count

Version 10

• Added option to specify merge_bam_alignment_memory and sort_bam_max_records_in_ram

Version 9

• Updated default drop seq tools version from 2.2.0 to 2.3.0

Version 8

• Made additional options available for running dropEst

Version 7

• Changed default dropEst memory from 104G to 52G

Version 6

· Added option to run dropEst

Version 5

• Specify full version for bcl2fastq (2.20.0.422-2 instead of 2.20.0.422)

Version 4

• Fixed issue that prevented bcl2fastq from running

Version 3

- Set default run_bcl2fastq to false
- · Create shortcuts for commonly used genomes

Version 2

· Updated QC report

Version 1

· Initial release

dropseq bundle Terra Release Notes

Version 4

• Added create_intervals_memory and extra_star_flags inputs

Version 3

- · Added extra disk space inputs
- Fixed bug that prevented creating multi-genome bundles

Version 2

• Added docker_registry input

Version 1

· Renamed sccloud to cumulus

Version 1

· Changed docker organization

Version 1

· Initial release

1.1.17 bcl2fastq

License

bcl2fastq license

Workflows

Workflows such as **cellranger_workflow** and **dropseq_workflow** provide the option of running bcl2fastq. We provide dockers containing bcl2fastq that are accessible only by members of the Broad Institute. Non-Broad Institute members will have to provide their own docker images. Please note that if you're a Broad Institute member and are not able to pull the docker image, please check https://app.terra.bio/#groups to see that you're a member of the all_broad_users group. If not, please contact Terra support and ask to be added to the all_broad_users@firecloud.org group.

Docker

Read this tutorial if you are new to Docker.

Then for a Debian based docker (e.g. continuumio/miniconda3), create the Dockerfile as follows:

```
RUN apt-get update && apt-get install --no-install-recommends -y alien unzip
ADD bcl2fastq2-v2-20-0-linux-x86-64.zip /software/
RUN unzip -d /software/ /software/bcl2fastq2-v2-20-0-linux-x86-64.zip && alien -i /

--software/bcl2fastq2-v2.20.0.422-Linux-x86_64.rpm && rm /software/bcl2fastq2-v2*
```

Next, download bcl2fastq from the Illumina website, which requires registration. Choose the Linux rpm file format and download bcl2fastq2-v2-20-0-linux-x86-64.zip to the same directory as your Dockerfile.

You can host your private docker images in the Google Container Registry.

Example

In this example we create a docker image for running cellranger mkfastq version 3.0.2.

- 1. Create a GCP project or reuse an existing project.
- 2. Enable the Google Container Registry
- 3. Clone the cumulus repository:

```
git clone https://github.com/lilab-bcb/cumulus.git
```

- 4. Add the lines to cumulus/docker/cellranger/3.0.2/Dockerfile to include bcl2fastq (see *Docker*).
- 5. Ensure you have Docker installed
- 6. Download cellranger from https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/3.0
- 7. Build, tag, and push the docker. Remember to replace PROJECT ID with your GCP project id:

```
cd cumulus/docker/cellranger/3.0.2/
docker build -t cellranger-3.0.2 .
docker tag cellranger-3.0.2 gcr.io/PROJECT_ID/cellranger:3.0.2
gcr.io/PROJECT_ID/cellranger:3.0.2
```

8. Import cellranger_workflow workflow to your workspace (see cellranger_workflow steps), and enter your docker registry URL (in this example, "gcr.io/PROJECT_ID/") in cellranger_mkfastq_docker_registry field of cellranger_workflow inputs.

1.1.18 Cell Ranger alternatives to generate gene-count matrices for 10X data

This count workflow generates gene-count matrices from 10X FASTQ data using alternative methods other than Cell Ranger.

Prepare input data and import workflow

1. Run cellranger_workflow to generate FASTQ data

You can skip this step if your data are already in FASTQ format.

Otherwise, you need to first run *cellranger_workflow* to generate FASTQ files from BCL raw data for each sample. Please follow cellranger workflow manual.

Notice that you should set **run_mkfastq** to true to get FASTQ output. You can also set **run_count** to false if you want to skip Cell Ranger count, and only use the result from *count* workflow.

For Non-Broad users, you'll need to build your own docker for bcl2fastq step. Instructions are here.

2. Import count

Import count workflow to your workspace.

See the Terra documentation for adding a workflow. The *count* workflow is under Broad Methods Repository with name "cumulus/count".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *count* workflow in the drop-down menu.

3. Prepare a sample sheet

3.1 Sample sheet format:

The sample sheet for *count* workflow should be in TSV format, i.e. columns are seperated by tabs not commas. Please note that the columns in the TSV can be in any order, but that the column names must match the recognized headings.

The sample sheet describes how to identify flowcells and generate channel-specific count matrices.

A brief description of the sample sheet format is listed below (**required column headers are shown in bold**).

Column	Description
Sample	Contains sample names. Each 10x channel should have a unique sample name.
Flowcells	Indicates the Google bucket URLs of folder(s) holding FASTQ files of this sample.

The sample sheet supports sequencing the same 10x channel across multiple flowcells. If a sample is sequenced across multiple flowcells, simply list all of its flowcells in a comma-seperated way. In the following example, we have 2 samples sequenced in two flowcells.

Example:

Moreover, if one flowcell of a sample contains multiple FASTQ files for each read, i.e. sequences from multiple lanes, you should keep your sample sheet as the same, and *count* workflow will automatically merge lanes altogether for the sample before performing counting.

3.2 Upload your sample sheet to the workspace bucket:

Use gsutil (you already have it if you've installed Google cloud SDK) in your unix terminal to upload your sample sheet to workspace bucket.

Example:

4. Launch analysis

In your workspace, open count in WORKFLOWS tab. Select the desired snapshot version (e.g. latest). Select Process single workflow from files as below

- Run workflow with inputs defined by file paths
- Run workflow(s) with inputs defined by data table

and click SAVE button. Select Use call caching and click INPUTS. Then fill in appropriate values in the Attribute column. Alternative, you can upload a JSON file to configure input by clicking Drag or click to upload json.

Once INPUTS are appropriated filled, click RUN ANALYSIS and then click LAUNCH.

Workflow inputs

Below are inputs for *count* workflow. Notice that required inputs are in bold.

Name	Description	Example	Default
input_tsv_fi	eInput TSV sample sheet describing metadata of each	"gs://fc-e0000000-	
	sample.	0000-0000-0000-	
		0000000000000/sample_she	et.tsv"
genome	Genome reference name. Current support: GRCh38, mm10.	"GRCh38"	
chemistry	10X genomics' chemistry name. Current support: "tenX_v3" (for V3 chemistry), "tenX_v2" (for V2 chemistry), "dropseq" (for Drop-Seq).	"tenX_v3"	
output dire	ctais URL of output directory.	"gs://fc-e0000000-	
• -		0000-0000-0000- 00000000000000/count_resul	t "
run_count	If you want to run count tools to generate gene-count matrices.	true	true
count_tool	Count tool to generate result. Options:	"StarSolo"	"StarSolo"
docker_regis	 bryDocker registry to use. Notice that docker image for Bustools is seperate. "quay.io/cumulus" for images on Red Hat registry; "cumulusprod" for backup images on Docker Hub. 	"quay.io/cumulus"	"quay.io/cumul
config version	onVersion of config docker image to use. This docker is	"0.2"	"0.2"
comig_versi	used for parsing the input sample sheet for downstream execution. Available options: 0.2, 0.1.	0.2	0.2
zones	Google cloud zones to consider for execution.	"us-east1-d us-west1-a us- west1-b"	"us- central1- a us- central1- b us- central1- c us- central1- t us-east1-b us-east1-c us-east1-d us-west1-a us-west1-b us-west1- c"
num_cpu		32	32
-	Number of CPUs to request for count per channel. Notice that when use Optimus for count, this input only affects steps of copying files. Optimus uses CPUs due to its own strategy.		
disk_space		500	500
60	Disk space in GB needed for count per channel. Notice that when use Optimus for count, this input only affects steps of copying files. Optimus uses disk space due to its own strategy.	Release Highlights in C	

Workflow outputs

See the table below for *count* workflow outputs.

Name	Туре	Description
output_folder	String	Google Bucket URL of output directory. Within it, each
		folder is for one sample in the input sample sheet.

1.1.19 Topic modeling

Prepare input data

Follow the steps below to run **topic_modeling** on Terra.

- 1. Prepare your count matrix. **Cumulus** currently supports the following formats: 'zarr', 'h5ad', 'loom', '10x', 'mtx', 'csv', 'tsv' and 'fcs' (for flow/mass cytometry data) formats
- 2. Upload your count matrix to the workspace.

Example:

3. Import *topic_modeling* workflow to your workspace.

See the Terra documentation for adding a workflow. The *cumulus* workflow is under Broad Methods Repository with name "cumulus/topic_modeling".

Moreover, in the workflow page, click the Export to Workspace... button, and select the workspace to which you want to export *topic modeling* workflow in the drop-down menu.

- 4. In your workspace, open topic_modeling in WORKFLOWS tab. Select Run workflow with inputs defined by file paths as below
 - Run workflow with inputs defined by file paths
 - O Run workflow(s) with inputs defined by data table

and click the SAVE button.

Workflow input

Inputs for the *topic modeling* workflow are described below. Required inputs are in bold.

Name	Description	Example	Default
input_file	Google bucket URL of the input count matrix.	"gs://fc-e0000000-	
		0000-0000-0000-	
		0000000000000/my_dataset.	h5ad"
number_of_	topics of number of topics.	[10,15,20]	
prefix_excludeComma separated list of features to exclude that start		"mt-,Rpl,Rps"	"mt-
	with prefix.		,Rpl,Rps"
min_percent_	ekprdustulfeatures expressed below min_percent.	2	
max_percent	dxprhsdedeatures expressed below min_percent.	98	
random_num	beanded number seed for reproducibility.	0	0

Workflow output

Name	Туре	Description
coherence_plot	File	Plot of coherence scores vs. number of topics
perplexity_plot	File	Plot of perplexity values vs. number of topics
cell_scores	Array[File]	Topic by cells (one file for each topic number)
feature_topics	Array[File]	Topic by features (one file for each topic number)
report	Array[File]	HTML visualization report (one file for each topic number)
stats	Array[File]	Computed coherence and perplexity (one file for each topic number)
model	Array[File]	Serialized LDA model (one file for each topic number)
corpus	File	Serialized corpus
dictionary	File	Serialized dictionary

1.1.20 Contributions

We welcome contributions to our repositories that make up the Cumulus ecosystem:

- pegasus
- pegasusio
- demuxEM
- cumulus
- cumulus_feature_barcoding
- cirrocumulus
- altocumulus
- stratocumulus

In addition to the Cumulus team, we would like to sincerely thank the following contributors:

Name)	Note
Kirk (Gosik	Assistance with topic modeling workflow

1.1.21 Contact us

If you have any questions related to Cumulus, please feel free to contact us via one of the following ways:

- Report new issues on our GitHub repository.
- Send emails to Cumulus Support Google Group.
- Join Cumulus Support Google Group for discussion and release update.